• Title/Summary/Keyword: Battery equivalent circuit model

Search Result 50, Processing Time 0.02 seconds

Basic Study on the Optimization of Automotive Battery Post Clamp (자동차용 배터리 포스트 클램프의 최적화에 관한 기초적 연구)

  • Choi, Hae-Kyu;Lee, Evan;Kim, Choon-Sik;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5443-5449
    • /
    • 2011
  • Battery post clamp has the role to fix each of terminals at electric condenser by connecting with the cable of power source. In this study, optimum design was achieved by reducing the material cost and the weight of vehicle with one part of battery post clamp. Stress and displacement were obtained by optimizing with design variables. The advanced model by the design through this study were compared with the original model. These optimum values can be applied usefully with the manufacturing field of battery component.

Comparative Study of Non-Electrochemical Hysteresis Models for LiFePO4/Graphite Batteries

  • Ma, Jiachen;Xie, Jiale;Bai, Kun
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1585-1594
    • /
    • 2018
  • The estimation of $LiFePO_4$/graphite battery states suffers from the prominent hysteresis phenomenon between the respective open-circuit voltage curves towards charging and discharging. A lot of hysteresis models have been documented to investigate the hysteresis mechanism. This paper reviews and deeply interprets four non-electrochemical hysteresis models and some improvements. These models can be conveniently incorporated into commonly used equivalent circuit models to reproduce battery behaviors. Through simulation and experimental comparisons of voltage predictions and state-of-charge estimations, the pros and cons of these models are presented.

High-Frequency Analysis Modeling of Hybrid Vehicle Battery (하이브리드 자동차 배터리의 고주파 해석 모델링)

  • Lee, Jae-Joong;Lee, June-Sang;Kim, Mi-Ro;Kweon, Hyck-Su;Nah, Wan-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.263-269
    • /
    • 2012
  • In order to present that the electromagnetic compatibility standards following the frequency goes up which is based automotive electronics, in this paper, a hybrid/electric vehicle battery which reflects the frequency of the equivalent circuit model is introduced. By using this circuit modeling, the impedance characteristics can be analysed and an analyze of battery one cell is finished. Using this model, each different from the discharging situation, the discharge characteristic curve could be led. Basic theoretical approaches and measuring results through MATLAB and experimental validation of the EIS measurement equipment was used.

Analysis and Experiment Verification of Heat Generation Factor of High Power 18650 Lithium-ion Cell (고출력 18650 리튬이온 배터리의 발열인자 해석 및 실험적 검증)

  • Kang, Taewoo;Yoo, Kisoo;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.365-371
    • /
    • 2019
  • This study shows the feasibility of the parameter of the 1st RC parallel equivalent circuit as a factor of the heat generation of lithium-ion cell. The internal resistance of a lithium-ion cell consists of ohmic and polarization resistances. The internal resistances at various SOCs of the lithium-ion cell are obtained via an electrical characteristic test. The internal resistance is inversely obtained through the amount of heat generated during the experiment. By comparing the resistances obtained using the two methods, the summation of ohmic and polarization resistances is identified as the heating factor of lithium-ion battery. Finally, the amounts of heat generated from the 2C, 3C, and 4C-rate discharge experiments and the COMSOL multiphysics simulation using the summation of ohmic and polarization resistances as the heating parameter are compared. The comparison shows the feasibility of the electrical parameters of the 1st RC parallel equivalent circuit as the heating factor.

Multiple Model Adaptive Estimation of the SOC of Li-ion battery for HEV/EV (다중모델추정기법을 이용한 HEV/EV용 리튬이온전지의 잔존충전용량 추정)

  • Jung, Hae-Bong;Kim, Young-Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.142-149
    • /
    • 2011
  • This paper presents a new state of charge(SOC) estimation of large capacity of Li-ion battery (LIB) based on the multiple model adaptive estimation(MMAE) method. We first introduce an equivalent circuit model of LIB. The relationship between the terminal voltage and the open circuit voltage(OCV) is nonlinear and may vary depending on the changes of temperature and C-rate. In this paper, such behaviors are described as a set of multiple linear time invariant impedance models. Each model is identified at a temperature and a C-rate. These model set must be obtained a priori for a given LIB. It is shown that most of impedances can be modeled by first-order and second-order transfer functions. For the real time estimation, we transform the continuous time models into difference equations. Subsequently, we construct the model banks in the manner that each bank consists of four adjacent models. When an operating point of cell temperature and current is given, the corresponding model bank is directly determined so that it is included in the interval generated by four operating points of the model bank. The MMAE of SOC at an arbitrary operating point (T $^{\circ}C$, $I_{bat}$[A]) is performed by calculating a linear combination of voltage drops, which are obtained by four models of the selected model bank. The demonstration of the proposed method is shown through simulations using DUALFOIL.

Novel Estimation Technique for the State-of-Charge of the Lead-Acid Battery by using EKF Considering Diffusion and Hysteresis Phenomenon (확산 및 히스테리시스 현상을 고려한 확장칼만필터를 이용한 새로운 납축전지의 충전상태 추정방법)

  • Duong, Van-Huan;Tran, Ngoc-Tham;Park, Yong-Jin;Choi, Woojin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.139-148
    • /
    • 2014
  • State-of-charge (SOC) is one of the significant indicators to estimate the driving range of the electric vehicle and to control the alternator of the conventional engine vehicles as well. Therefore its precise estimation is crucial not only for utilizing the energy effectively but also preventing critical situations happening to the power train and lengthening the lifetime of the battery. However, lead-acid battery is time-variant, highly nonlinear, and the hysteresis phenomenon causes large errors in estimation SOC of the battery especially under the frequent discharge/charge. This paper proposes a novel estimation technique for the SOC of the Lead-Acid battery by using a well-known Extended Kalman Filter (EKF) and an electrical equivalent circuit model of the Lead-Acid battery considering diffusion and hysteresis characteristics. The diffusion is considered by the reconstruction of the open circuit voltage decay depending on the rest time and the hysteresis effect is modeled by calculating the normalized integration of the charge throughput during the partial cycle. The validity of the proposed algorithm is verified through the experiments.

Development of Battery Monitoring System Using the Extended Kalman Filter (확장 칼만 필터를 이용한 배터리 모니터링 시스템 개발)

  • Jo, Sung-Woo;Jung, Sun-Kyu;Kim, Hyun-Tak
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.7-14
    • /
    • 2020
  • A Battery Monitoring System capable of State-of-Charge(SOC) estimation using the Extended Kalman Filter(EKF) is described in this paper. In order to accurately estimate the SOC of the battery, the battery cells were modeled as the Thevenin equivalent circuit model. The Thevenin model's parameters were measured in experiments. For the Battery Monitoring System, we designed a battery monitoring device that can calculate the SOC estimation using the EKF and a monitoring server that controls multiple battery monitoring devices. We also develop a web-based dashboard for controlling and monitoring batteries. Especially the computation of the monitoring server could be reduced by calculating the battery SOC estimation at each Battery Monitoring Device.

A study on a Development of Electric Equivalent Circuit Models of Vehicle Electric Power System (자동차 전력 시스템의 전기적 등가회로 모델 개발에 관한 연구)

  • Choi, Dae-Ho;Lee, Jae-In;SunWoo, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.669-671
    • /
    • 2000
  • Vehicle electric power system, which consists of two major components; an alternator and a battery, supplies electric power to vehicle electric and electronic systems. In recent years, bigger power supply is required for the rapid demand of the number of vehicle electric and electronic systems. It is important that vehicle power system should be analyzed exactly. For the simulation of vehicle electric power system, appropriate component model of vehicle electric power system should be chosen. In this paper, a simplified and accurate battery model is developed to obtain the battery parameters, and a Variable Alternator Terminal Voltage Model is introduced to described an alternator. The case study shows that simulation results using the suggested models are well agreed with the experiments.

  • PDF

Modeling and Analysis of Active-Clamp, Full-Bridge Boost Converter (능동 클램프 풀브릿지 부스트 컨버터에 대한 모델링 및 분석)

  • Kim Marn-Go
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.610-614
    • /
    • 2004
  • Recently, an active-clamp, full-bridge boost converter has been actively studied for high-power applications such as power factor correction and battery discharger. However, DC and AC modeling for this converter has not conquered. In this paper, a DC and small-signal AC modeling for the active-clamp, full-bridge boost converter is described. Based on the operation principle, the ac part of the converter can be replaced by a do counterpart. Then, a conceptual equivalent circuit is derived by rearranging the switches. The equivalent circuit for this converter consists of CCM (Continuous conduction mode) boost and DCM (Discontinuous conduction mode) buck converter. The analyses for the equivalent CCM boost and DCM buck converter are done using the model of PWM switch. The theoretical modeling results are confirmed through experiment or SIMPLIS simulation.

  • PDF

Dual EKF-Based State and Parameter Estimator for a LiFePO4 Battery Cell

  • Pavkovic, Danijel;Krznar, Matija;Komljenovic, Ante;Hrgetic, Mario;Zorc, Davor
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.398-410
    • /
    • 2017
  • This work presents the design of a dual extended Kalman filter (EKF) as a state/parameter estimator suitable for adaptive state-of-charge (SoC) estimation of an automotive lithium-iron-phosphate ($LiFePO_4$) cell. The design of both estimators is based on an experimentally identified, lumped-parameter equivalent battery electrical circuit model. In the proposed estimation scheme, the parameter estimator has been used to adapt the SoC EKF-based estimator, which may be sensitive to nonlinear map errors of battery parameters. A suitable weighting scheme has also been proposed to achieve a smooth transition between the parameter estimator-based adaptation and internal model within the SoC estimator. The effectiveness of the proposed SoC and parameter estimators, as well as the combined dual estimator, has been verified through computer simulations on the developed battery model subject to New European Driving Cycle (NEDC) related operating regimes.