• Title/Summary/Keyword: Battery SoC

Search Result 108, Processing Time 0.023 seconds

Charge/Discharge characteristics of Li ion battery according to weight ratio of cathode to anode (리튬이온전지의 정.부극 중량비에 따른 전지의 충방전특성)

  • Eom, S.W.;Doh, C.H.;Hyung, Y.U.;Moon, S.I.;Yeom, D.H.;Yun, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1412-1413
    • /
    • 1996
  • Li ion battery have many advantages such as high energy density, high voltage and low self discharge, so it will replace conventional Ni/Cd battery. But, charge-discharge characterization of Li battery is controlled by weight ratio of electrodes (Cathode/Anode). So, we performed a study on relation between charge/discharge characterization and weight ratio (cathode/anode).

  • PDF

Enhanced Coulomb Counting Method for State-of-Charge Estimation of Lithium-ion Batteries based on Peukert's Law and Coulombic Efficiency

  • Xie, Jiale;Ma, Jiachen;Bai, Kun
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.910-922
    • /
    • 2018
  • Conventional battery state-of-charge (SoC) estimation methods either involve sophisticated models or consume considerable computational resource. This study constructs an enhanced coulomb counting method (Ah method) for the SoC estimation of lithium-ion batteries (LiBs) by expanding the Peukert equation for the discharging process and incorporating the Coulombic efficiency for the charging process. Both the rate- and temperature-dependence of battery capacity are encompassed. An SoC mapping approach is also devised for initial SoC determination and Ah method correction. The charge counting performance at different sampling frequencies is analyzed experimentally and theoretically. To achieve a favorable compromise between sampling frequency and accumulation accuracy, a frequency-adjustable current sampling solution is developed. Experiments under the augmented urban dynamometer driving schedule cycles at different temperatures are conducted on two LiBs of different chemistries. Results verify the effectiveness and generalization ability of the proposed SoC estimation method.

Impedance Characteristics of the Gel Type VRLA Battery at the Various State-of-Charge (겔식 납축 전지의 충전상태에 따른 임피던스 특성 연구)

  • An, Sang-Yong;Jeong, Euh-Duck;Won, Mi-Sook;Shim, Yoon-Bo
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.33-36
    • /
    • 2008
  • In the present study, impedance spectrometry has been used for predicting State-of-Charge (SoC) of gel type, Valve Regulated Lead Acid (VRLA), battery. The impedance measurements of VRLA battery (2V/1.2 Ah) at various SoC were made over the frequency range from 100kHz to 10mHz with an amplitude 10 mV. The impedance parameters have been evaluated by the analysis of the data using an equivalent circuit and a complex non-linear least squares (CNLS) fitting method. The charge transfer resistance values and double layer capacitance values of the positive electrode were higher than those of the negative electrode. The gel resistance values increased with decreasing in SoC. This indicates that the gel resistance is an important parameter for predicting SoC of VRLA battery.

Charge/Discharge Characteristics Analysis of Li-Polymer battery (리튬 폴리머 전지의 충방전 특성해석)

  • 최해룡;강병희;목형수;최규하;신우석
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.222-225
    • /
    • 1999
  • Started upon it discovery by Wright et al in 1973, studies on the solid polymer electrolyte are being carried out vigorously. So, models of Li-polymer battery have been developed through R-L-C components combination and P-spice functional block in this paper. The impedance characteristics of Li-polymer battery with R-L-C components are presented. Simulation results using P-spice functional model are compared with measured charge/discharge characteristics.

  • PDF

Elimination of the State-of-Charge Errors for Distributed Battery Energy Storage Devices in Islanded Droop-controlled Microgrids

  • Wang, Weixin;Wu, Fengjiang;Zhao, Ke;Sun, Li;Duan, Jiandong;Sun, Dongyang
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1105-1118
    • /
    • 2015
  • Battery energy storage devices (ESDs) have become more and more commonplace to maintain the stability of islanded power systems. Considering the limitation in inverter capacity and the requirement of flexibility in the ESD, the droop control was implemented in paralleled ESDs for higher capacity and autonomous operation. Under the conventional droop control, state-of-charge (SoC) errors between paralleled ESDs is inevitable in the discharging operation. Thus, some ESDs cease operation earlier than expected. This paper proposes an adaptive accelerating parameter to improve the performance of the SoC error eliminating droop controller under the constraints of a microgrid. The SoC of a battery ESD is employed in the active power droop coefficient, which could eliminate the SoC error during the discharging process. In addition, to expedite the process of SoC error elimination, an adaptive accelerating parameter is dedicated to weaken the adverse effect of the constraints due to the requirement of the system running. Moreover, the stability and feasibility of the proposed control strategy are confirmed by small-signal analysis. The effectiveness of the control scheme is validated by simulation and experiment results.

Capacity Firming for Wind Generation using One-Step Model Predictive Control and Battery Energy Storage System

  • Robles, Micro Daryl;Kim, Jung-Su;Song, Hwachang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2043-2050
    • /
    • 2017
  • This paper presents two MPC (Model Predictive Control) based charging and discharging algorithms of BESS (Battery Energy Storage System) for capacity firming of wind generation. To deal with the intermittency of the output of wind generation, a single BESS is employed. The proposed algorithms not only make the output of combined systems of wind generation and BESS track the predefined reference, but also keep the SoC (State of Charge) of BESS within its physical limitation. Since the proposed algorithms are both presented in simple if-then statements which are the optimal solutions of related optimization problems, they are both easy to implement in a real-time system. Finally, simulations of the two strategies are done using a realistic wind farm library and a BESS model. The results on both simulations show that the proposed algorithms effectively achieve capacity firming while fulfilling all physical constraints.

Design and Experiment of Three-phase Interleaved DC-DC Converter for 5kW Lead-Acid Battery Charger (5kW 배터리 충전기용 양방향 3상 인터리브드 DC-DC 컨버터 설계 및 실험)

  • Lee, Wu-Jong;Eom, Ju-Kyoung;Han, Byung-Moon;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.227-233
    • /
    • 2011
  • This paper proposes a design and experiment of three phase interleaved dc-dc converter for 5kW battery charger. The charger consists of a three-phase interleaved dc-dc converter, which interfaces batteries and DC link, and a grid connected inverter. Lead-acid battery is modeled in a simple R-C model by matlab. Parameters of the battery are estimated based on step current discharging test. The battery is connected to three-phase interleaved DC-DC converter in order to reduce the ripple current to the battery and so, increase the lifetime of battery. Controller for charging and discharging mode is designed and tested in a 5kW charger prototype.

Discharge Properties of Sodium-sulfur Batteries at Room Temperature (상온용 나트륨/유황전지의 방전 특성)

  • Kim, T.B.;Ahn, H.Y.;Hur, H.Y.
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.193-197
    • /
    • 2006
  • The sodium/sulfur(Na/S) battery has many advantages such as high theoretical specific energy(760Wh/kg), and low material cost based on the abundance of electrode material in the earth. It has been reported that the electrochemical properties of sodium/sulfur cell above $300^{\circ}C$, utilized a solid ceramic electrolyte and liquid sodium and sulfur electrodes. A lot of researches have been performed in this field. Recently, Na/S battery system was applied for electricity storage system for load-leveling. One of severe problems of sodium/sulfur battery was high operating temperature above $300^{\circ}C$, which could induce the explosion and corrosion by molten sodium, sulfur and polysulfides. In order to develop sodium battery operated at low temperature, sodium ion battery has been studied using carbon anode, and sodium oxides cathodes. However, the energy densities of the sodium ion batteries were much lower than high temperature sodium/sulfur cell. In this study, the sodium/sulfur battery with 1M $NaCF_3SO_3$ is tested at room temperature. The charge-discharge mechanism was discussed based on XRD, DSC, SEM and EDS results.

COIN형 리튬 폴리머전지의 충방전 특성

  • 박수길;박종은;손원근;이흥기;김상욱;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.497-500
    • /
    • 1997
  • Conducting polymer is new material in lithium secondary battery. conducting polymer has a lot of merit which is flexible and good handing so that this material is used battery system, solid polymer electrolytes airs used PEO(Polyethylene oxide) and PEO/PMMA branding material adding by liquid plasticizer or lithium salt polymer electrolyte which is added liquid plasticizer, lithium salt decreased the crystallity and thermal stability is over than 13$0^{\circ}C$. it is very useful tn apply lithium secondary battery system.

  • PDF

Low Power SoC Design Trends Using EDA Tools (설계툴을 사용한 저전력 SoC 설계 동향)

  • Park, Nam Jin;Joo, Yu Sang;Na, Jung-Chan
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.69-78
    • /
    • 2020
  • Small portable devices such as mobile phones and laptops currently display a trend of high power consumption owing to their characteristics of high speed and multifunctionality. Low-power SoC design is one of the important factors that must be considered to increase portable time at limited battery capacities. Popular low power SoC design techniques include clock gating, multi-threshold voltage, power gating, and multi-voltage design. With a decreasing semiconductor process technology size, leakage power can surpass dynamic power in total power consumption; therefore, appropriate low-power SoC design techniques must be combined to reduce power consumption to meet the power specifications. This study examines several low-power SoC design trends that reduce semiconductor SoC dynamic and static power using EDA tools. Low-power SoC design technology can be a competitive advantage, especially in the IoT and AI edge environments, where power usage is typically limited.