DOI QR코드

DOI QR Code

Impedance Characteristics of the Gel Type VRLA Battery at the Various State-of-Charge

겔식 납축 전지의 충전상태에 따른 임피던스 특성 연구

  • 안상용 (부산대학교 화학과) ;
  • 정의덕 (한국기초과학지원연구 부산센터) ;
  • 원미숙 (한국기초과학지원연구 부산센터) ;
  • 심윤보 (부산대학교 화학과)
  • Published : 2008.02.28

Abstract

In the present study, impedance spectrometry has been used for predicting State-of-Charge (SoC) of gel type, Valve Regulated Lead Acid (VRLA), battery. The impedance measurements of VRLA battery (2V/1.2 Ah) at various SoC were made over the frequency range from 100kHz to 10mHz with an amplitude 10 mV. The impedance parameters have been evaluated by the analysis of the data using an equivalent circuit and a complex non-linear least squares (CNLS) fitting method. The charge transfer resistance values and double layer capacitance values of the positive electrode were higher than those of the negative electrode. The gel resistance values increased with decreasing in SoC. This indicates that the gel resistance is an important parameter for predicting SoC of VRLA battery.

본 연구에서는 겔식 VRLA (valve regulated lead acid번지의 충전상태(SoC) 판단을 위해 임피던스 기법을 이용하여 조사하였다. 임피던스는 VRLA전지 (2V/1.2Ah)의 다양한 충전상태에서 진폭 10mV로 100kHz에서${\sim}$10mHz까지 측정하였다. 측정된 임피던스 데이터로부터 등가회로를 유도하고, CNLS (Complex Non-linear Least Squares) 법을 사용하여 분석하였다. 양극 쪽의 전하전이 저항과 전기이중층 커패시턴스가 음극보다 높았다. 겔 저항은 충전상태가 감소함에 따라 증가하며 이는 VRLA 전지의 충전상태를 판단하는데 중요한 파라미터임을 확인하였다.

Keywords

References

  1. A. R. Nelatury, P. Singh, Power Sources 112, 621 (2002) https://doi.org/10.1016/S0378-7753(02)00443-3
  2. A. J. Salkind, C. Fennie, P. Singh, T. Atwater, D. D. Reisner, J. Power Sources 80, 293 (1999) https://doi.org/10.1016/S0378-7753(99)00079-8
  3. J. P. Cun, J. N. Fiorina, M. Fraisse, H. Mabboux, INTELEC Conf., Boston, US, 1996, 22
  4. I. Kurisawa, M. Iwata, INTELEC Conf., Melbourne, Australia, 1997, 29
  5. R. V. Biagetti, A. M. Pesco, US Patent 4952865 (1989)
  6. T. Hubert, Proceddings of the HFPC'95, 382
  7. M. A. Casacca, Z. M. Salameh, IEEE Trans, Energy Conf. 7(3), 442 (1992)
  8. A. H. Anbuky, P. E. Pascoe, IEEE Trans, Ind. Electron. 47(30), 565 (2000) https://doi.org/10.1109/41.847897
  9. M. Kozaki, T. Yamazaki, US Patent 5691078 (1997)
  10. J. H. Aylor, A. Thieme, B. W. Johnson, IEEE Trans, Ind. Electron. 39(5), 398 (1992) https://doi.org/10.1109/41.161471
  11. S. Piller, M. Perrin, a. Jossen, J. Power Sources 96, 113 (2001) https://doi.org/10.1016/S0378-7753(01)00560-2
  12. D. O. Feder, G. Croda, K. S. Champlin, S. J. Mcshane, M. J. Hlavac J. Power Sources 40, 235 (1992) https://doi.org/10.1016/0378-7753(92)80056-H
  13. A. J. Salkind, J. J. Kelley, A. G. Cannone, in: D. Linden. (Ed.), Handbook of batteries, Mc-Graw Hill, New York, 1995 pp. 24.1-24.89
  14. D. Berndt, Maintenance Free Batteries, Willey, New York, 1993
  15. T. R. Crompton, Battery Reference Book, Butterworth, London, 1990
  16. K. R. Bullock, J. Power Sources 51, 1 (1994) https://doi.org/10.1016/0378-7753(94)01952-5
  17. M. W. Kniteton, J. Power Sources 53, 149 (1995) https://doi.org/10.1016/0378-7753(94)01984-4
  18. H. S. Glarum, L. J. Olmer J. Electroanal. Chem. 132, 59 (1982) https://doi.org/10.1016/0022-0728(82)85005-5
  19. M. Keddam, O. R. H. Takenoud, J. Electrochem. Soc. 128, 257 (1981) https://doi.org/10.1149/1.2127401
  20. J. C. Padget, P. J. Moreland, J. Coatings Tech 55 (1983)
  21. G. W. Walter, J. Electroanal. Chem 118, 259 (1981) https://doi.org/10.1016/S0022-0728(81)80546-3
  22. S. H. Glarum, J. H. Marshall, J. Electochem. Soc. 128, 968 (1981) https://doi.org/10.1149/1.2127584
  23. A. Kisza, M. Grzeszczuk, J. Electroanal. Chem 91, 115 (1978) https://doi.org/10.1016/S0022-0728(78)80255-1
  24. M. Etman, C. Koehler, R. Parsons, J. Electroanal. Chem 130, 57 (1981) https://doi.org/10.1016/S0022-0728(81)80376-2
  25. J. R. Macdonald (Ed.), Impedance Spectroscopy- Emphasizing solid Materials and systems, Wiley, New York, 1987
  26. S. rodrigues, N. Munichandraiah, a. K. Shukla, J. Power Sources 87, 12 (2000) https://doi.org/10.1016/S0378-7753(99)00351-1
  27. D. Berndt, Maintenance Free Batteries, 2nd Edition, Willey, New york, 1997
  28. F. Huet, J. Power Sources 70, 59 (1998) https://doi.org/10.1016/S0378-7753(97)02665-7
  29. S.A.G.R. Karunathilaka, R. Barton, M. hughes, M.A. Hampson J. Appl. Electrochem 15, 251 (1985) https://doi.org/10.1007/BF00620940
  30. B. Savora-Stoynov, X. Stovnov J. Appl. Electrochem 17, 1159 (1987) https://doi.org/10.1007/BF01023599
  31. P. Suresh, D.H. Nagaruju, A.K. Shukla, N. Munichandraiah, J. Electrochimca Acta 50 (16-17) (2005) 3262 https://doi.org/10.1016/j.electacta.2004.11.055