• Title/Summary/Keyword: Battery Life

Search Result 613, Processing Time 0.028 seconds

Practical Challenges Associated with Catalyst Development for the Commercialization of Li-air Batteries

  • Park, Myounggu;Kim, Ka Young;Seo, Hyeryun;Cheon, Young Eun;Koh, Jae Hyun;Sun, Heeyoung;Kim, Tae Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • Li-air cell is an exotic type of energy storage and conversion device considered to be half battery and half fuel cell. Its successful commercialization highly depends on the timely development of key components. Among these key components, the catalyst (i.e., the core portion of the air electrode) is of critical importance and of the upmost priority. Indeed, it is expected that these catalysts will have a direct and dramatic impact on the Li-air cell's performance by reducing overpotentials, as well as by enhancing the overall capacity and cycle life of Li-air cells. Unfortunately, the technological advancement related to catalysts is sluggish at present. Based on the insights gained from this review, this sluggishness is due to challenges in both the commercialization of the catalyst, and the fundamental studies pertaining to its development. Challenges in the commercialization of the catalyst can be summarized as 1) the identification of superior materials for Li-air cell catalysts, 2) the development of fundamental, material-based assessments for potential catalyst materials, 3) the achievement of a reduction in both cost and time concerning the design of the Li-air cell catalysts. As for the challenges concerning the fundamental studies of Li-air cell catalysts, they are 1) the development of experimental techniques for determining both the nano and micro structure of catalysts, 2) the attainment of both repeatable and verifiable experimental characteristics of catalyst degradation, 3) the development of the predictive capability pertaining to the performance of the catalyst using fundamental material properties. Therefore, under the current circumstances, it is going to be an extremely daunting task to develop appropriate catalysts for the commercialization of Li-air batteries; at least within the foreseeable future. Regardless, nano materials are expected to play a crucial role in this field.

타이어 공기압 센서의 가속수명시험을 통한 수명예측

  • Kim, Hyeong-Min;Wi, Sin-Hwan;Lee, Hui-Bok
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.41-48
    • /
    • 2011
  • In order to assess the reliability of the Tire Pressure Sensor for automobiles, accelerated life test model and procedure are developed. By using this method, failure mechanism and life distribution are analyzed. The main results are as follows; i) the main failure mechanism is degradation failure that is, PCB destruction and battery Discharge by high temperature. ii) the life distribution of the Tire Pressure Sensor fitted well to Weibull life distribution and the accelerated life model of that is fitted well to Arrhenius model. iii) at the result of the life distribution, accelerated life test method is developed

  • PDF

Changes of Cognitive Function and Health-related Quality of Life among the Elderly Living alone through the Participation in Cognitive Program (인지프로그램 참여에 따른 독거노인들의 인지기능과 건강관련 삶의 질의 변화)

  • Son, Sung-Min;Bak, Ah-Ream
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.279-287
    • /
    • 2021
  • The purpose of this study is to analyze the changes of the cognitive function and health-related quality of life. Study subjects were 35 elderly living alone and they participated in the cognitive program for 8 weeks regularly. The assessment of cognitive function was used by the Loewenstein occupational therapy cognitive assessment battery and the orientation, visual attention, spatial perception, motor praxis, visuomotor organization, thinking operation, and attention. The assessment of health-related quality of life was used by the Short form-8 health survey and the gerneral health condition, physical function and role, pain, vitality, social function, mental health, and emotional role. As the results, all the results of variables showed the statistically significant increase after the participation in the cognitive program. To improve the cognitive function and health quality of life of the elderly living alone, the participation in the cognitive program should be considered.

Design and Implementation for Portable Low-Power Embedded System (저전력 휴대용 임베디드 시스템 설계 및 구현)

  • Lee, Jung-Hwan;Kim, Myung-Jung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.7
    • /
    • pp.454-461
    • /
    • 2007
  • Portable embedded systems have recently become smaller in size and offer a variety of junctions for users. These systems require high performance processors to handle the many functions and also a small battery to fit inside the system. However, due to its size, the battery life has become a major issue. It is important to have both efficient power design and management for each function, while optimizing processor voltage and clock frequency in order to extend the battery life of the system. In this paper, we calculated the efficiency of power in optimizing power rail. This system has two microprocessors. One is used to play music and movie files while the other is for DMB. In order to reduce power consumption, the DMB microprocessor is turned of while music or videos are played. Lastly, DVFS is applied to the processor in the system to reduce power consumption. Experimental results of the implemented system have resulted in reduced power consumption.

Influence of Filling Density in the Positive Active-material on the Cycle-life Performance of the Tubular Type Gelled Valve Regulated Lead Acid Batteries (튜브식 겔형 납축전지에 있어서 활물질 밀도에 따른 싸이클 수명 특성)

  • Yoon, Youn-Saup;Kim, Byung-Kwan;Lee, Soo;Kim, Kyu-Tea
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.415-418
    • /
    • 1999
  • The characteristics of VRLA (valve regulated Iead-acid) battery with the tubular positive plate and gel type electrolyte were examined as a function of active material filling density. The filling density of positive plate was 3.2 g/mL, 3.4 g/mL, and 3.6 g/mL, respectively. These VRLA batteries were cycled with 100% DOD (depth of discharge) at the $C_5/5$ rate, followed by IU-type recharge with $I_{max}=0.2C_{10}/10$ and a final voltage V=2.40 V/cell. The test was performed in a thermostatic room at $25{\pm}1^{\circ}C$. The result indicated that the initial capacity was independent of active material filling density, i.e., the highest initial capacity was 3.4 g/mL of filling density and the lowest was 3.6 g/mL. On aspect of the cycle-life performance of the VRLA battery, the filling density of 3.6 g/mL was similar to that of 3.4 g/mL in the positive plate, and both were higher than that of 3.2 g/mL. Water-loss and degradation of the VRLA battery were decreased according to an increase of the filling density in the positive plate. The optimum filling density of the active material was 3.4~3.6 g/mL.

  • PDF

Design of a High-Resolution Integrating Sigma-Delta ADC for Battery Capacity Measurement (배터리 용량측정을 위한 고해상도 Integrating Sigma-Delta ADC 설계)

  • Park, Chul-Kyu;Jang, Ki-Chang;Woo, Sun-Sik;Choi, Joong-Ho
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.28-33
    • /
    • 2012
  • Recently, with mobile devices increasing, as a variety of multimedia functions are needed, battery life is decreased. Accordingly the methods for extending the battery life has been proposed. In order to implement these methods, we have to know exactly the status of the battery, so we need a high resolution analog to digital converter(ADC). In case of the existing integrating sigma-delta ADC, it have not convert reset-time conversion cycle to function of resolution. Because of this reason, all digital values corresponding to the all number of bits will not be able to be expressed. To compensated this drawback, this paper propose that all digital values corresponding to the number of bits can be expressed without having to convert reset-time additional conversion cycle to function of resolution by using a up-down counter. The proposed circuit achieves improved SNDR compared to conventional converters simulation result. Also, this was designed for low power suitable for battery management systems and fabricated in 0.35um process.

Modeling of the Cycle Life of a Lithium-ion Polymer Battery (리튬 이온 폴리머 전지의 사이클 수명 모델링)

  • Kim, Ui Seong;Lee, Jungbin;Yi, Jaeshin;Shin, Chee Burm;Choi, Je Hun;Lee, Seokbeom
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.344-348
    • /
    • 2009
  • One-dimensional modeling was carried-out to predict the capacity loss of a lithium-ion polymer battery during cycling. The model not only accounted for electrochemical kinetics and ionic mass transfer in a battery cell, but also considered the parasitic reaction inducing the capacity loss. In order to validate the modeling, modeling results were compared with the measurement data of the cycling behaviors of the lithium-ion polymer batteries having nominal capacity of 5Ah from LG Chem. The cycling was performed under the protocol of the constant current discharge and the constant current and constant voltage charge. The discharge rate of 1C was used. The range of state of charge was between 1 and 0.2. The voltage was kept constant at 4.2 V until the charge current tapered to 50 mA. The retention capacity of the battery was measured with 1C and 5C discharge rates before the beginning of cycling and after every 100 cycles of cycling. The modeling results were in good agreement with the measurement data.

Adaptive Power Saving Mechanism of Low Power Wake-up Receivers against Battery Draining Attack (배터리 소모 공격에 대응하는 저전력 웨이크업 리시버의 적응형 파워 세이빙 메커니즘)

  • So-Yeon Kim;Seong-Won Yoon;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.393-401
    • /
    • 2024
  • Recently, the Internet of Things (IoT) has been widely used in industries and daily life that directly affect human safety, life, and assets. However, IoT devices, which need to meet low-cost, lightweight, and low-power requirements, face a significant problem of shortened battery lifetime due to battery draining attacks and interference. To solve this problem, the 802.11ba standard for the Wake-up Receiver (WuR) has emerged, this feature is playing a crucial role in minimizing energy consumption. However, the WuR protocol did not consider security mechanisms in order to reduce latency and overhead. Therefore, in this study, anAdaptive Power Saving Mechanism (APSM) is proposed for low-power WuR to counter battery draining attacks. APSM can minimize abnormally occurring power consumption by exponentially increasing power-saving time in environments prone to attacks. According to experimental results, the proposed APSM improved energy consumption efficiency by a minimum of 13.77% compared to the traditional Legacy Power Saving Mechanism (LPSM) when attack traffic ratio is 10% or more of the total traffic.

Combined Control Algorithm for a DC-DC Converter of PV & Battery for Mongolian Nomadic Life (유목민들을 위한 PV & Battery용 DC-DC 컨버터의 통합제어 알고리즘)

  • Tuvdensuren, Oyunjargal;Le, Tat-Thang;Park, Min-Won;Yu, In-Keun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-29
    • /
    • 2018
  • A stand-alone Photovoltaic (PV) system is one of the most important energy system for Mongolian nomadic herders. Basically, a stand-alone PV system uses two DC-DC converters. This makes the system costly, size bigger and difficult to move from one place to another place for the nomadic herders. A combined control algorithm for charging the battery using Stage of Charge (SOC) and Maximum Power Point Tracking (MPPT) is proposed in this paper. The batteries are charged by the three stage method; bulk, absorption and float charge. In the bulk stage used the MPPT function in this study. The performance of the proposed control algorithm is evaluated in both steady and changing weather conditions. The results are obtained using PSIM software. The results obtained in this paper are useful in designing a stand-alone PV system in the rural life like Mongolian nomadic herders.

Development of a Fast Charging System Utilizing Charge Profile and Cell Balance Control Technology for Large Capacity Lithium-ion Batteries (충전 프로파일 및 셀 밸런스 제어기술을 활용한 대용량 리튬이온 배터리 고속충전시스템 개발)

  • Yunana, Gani Dogara;Ahn, Jae Young;Park, Chan Won
    • Journal of Industrial Technology
    • /
    • v.40 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • Lithium-ion cells have become the go-to energy source across all applications; however, dendritic growth remains an issue to tackle. While there have been various research conducted and possible solutions offered, there is yet to be one that efficiently rules out the problem without, however, introducing another. This paper seeks to present a fast charging method and system to which lithium-ion batteries are charged while maintaining their lifetime. In the proposed method, various lithium cells are charged under multiple profiles. The parameters of charge profiles that inflict damage to the cell's electrodes are obtained and used as thresholds. Thus, during charging, voltage, current, and temperature are actively controlled under these thresholds. In this way, dendrite formation suppressed charging is achieved, and battery life is maintained. The fast-charging system designed, comprises of a 1.5kW charger, an inbuilt 600W battery pack, and an intelligent BMS with cell balancing technology. The system was also designed to respond to the aging of the battery to provide adequate threshold values. Among other tests conducted by KCTL, the cycle test result showed a capacity drop of only 0.68% after 500 cycles, thereby proving the life maintaining capability of the proposed method and system.