• Title/Summary/Keyword: Battery Capacity

Search Result 1,203, Processing Time 0.028 seconds

Synthesis and Electrochemical Properties of Li1-xFeO2-yFy-LixMnO2 (Mn/(Mn + Fe) = 0.8, 0≤y≤0.15)) Cathode Materials by Anion Substitution (음이온 치환을 이용한 Li1-xFeO2-yFy-LixMnO2 (Mn/(Mn + Fe) = 0.8, 0≤y≤0.15) 양극 활물질의 합성 및 전기화학적 특성)

  • Heo, J.B.;Park, G.J.;Lee, Y.S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.239-244
    • /
    • 2007
  • In order to investigate the effect of fluorine ion in the $Li_{1-x}FeO_2Li_xMnO_2$ (Mn/(Mn + Fe) = 0.8) cathode material, it was synthesized $Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$ (Mn/(Mn + Fe) = 0.8, $0.05{\le}y{\le}0.15$) cathode materials at $350^{\circ}C$ for 10hrs using solid-state method. $Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$ (Mn/(Mn + Fe) = 0.8, $0.0{\le}y{\le}0.1$ was composed many large needle-like particles of about $1-1.5\;{\mu}m$ and small particles of about 50-100 nm, which were distributed among the larger particles. However, $Li_{1-x}FeO_{1.85}F_{0.15}-Li_xMnO_2$ material showed slightly different particle morphology. The particles of $Li_{1-x}FeO_{1.85}F_{0.15}-Li_xMnO_2$ were suddenly increased and started to be a spherical type of particle shape. $Li/Li_{1-x}FeO_{1.9}F_{0.1}-Li_xMnO_2$ cell showed a high initial discharge capacity of 163 mAh/g and a high cycle retention rate of 95% after 50 cycles. The initial discharge capacity of $Li/Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$ ($0.05{\le}y{\le}0.15$) cells increased according to the increase of F content. However, the cycleability of this cell was very rapidly decreased when the substituted fluorine content is over 0.1. We suggested that too large amount of F ion fail to substitute into the $Li_{1-x}FeO_2-Li_xMnO_2$ structure, which resulted in the severe decline of battery performance.

Macroporous Thick Tin Foil Negative Electrode via Chemical Etching for Lithium-ion Batteries (화학적 식각을 통해 제조한 리튬이온 이차전지용 고용량 다공성 주석후막 음극)

  • Kim, Hae Been;Lee, Pyung Woo;Lee, Dong Geun;Oh, Ji Seon;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.36-42
    • /
    • 2019
  • A macroporous Sn thick film as a high capacity negative electrode for a lithium ion secondary battery was prepared by using a chemical etching method using nitric acid for a Sn film having a thickness of $52{\mu}m$. The porous Sn thick film greatly reduced the over-voltage for the alloying reaction with lithium by the increased reaction area. At the same time. The porous structure of active Sn film plays a part in the buffer and reduces the damage by the volume change during cycles. Since the porous Sn thick film electrode does not require the use of the binder and the conductive carbon black, it has substantially larger energy density. As the concentration of nitric acid in etching solution increased, the degree of the etching increased. The etching of the Sn film effectively proceeded with nitric acid of 3 M concentration or more. The porous Sn film could not be recovered because the most of Sn was eluted within 60 seconds by the rapid etching rate in the 5 M nitric acid. In the case of etching with 4 M nitric acid for 60 seconds, the appropriate porous Sn film was formed with 48.9% of weight loss and 40.3% of thickness change during chemical acid etching process. As the degree of etching of Sn film increased, the electrochemical activity and the reversible capacity for the lithium storage of the Sn film electrode were increased. The highest reversible specific capacity of 650 mAh/g was achieved at the etching condition with 4 M nitric acid. The porous Sn film electrode showed better cycle performance than the conventional electrode using a Sn powder.

A Double-Blind Comparison of Paroxetine and Amitriptyline in the Treatment of Depression Accompanied by Alcoholism : Behavioral Side Effects during the First 2 Weeks of Treatment (주정중독에 동반된 우울증의 치료에서 Paroxetine과 Amitriptyline의 이중맹 비교 : 치료초기 2주 동안의 행동학적 부작용)

  • Yoon, Jin-Sang;Yoon, Bo-Hyun;Choi, Tae-Seok;Kim, Yong-Bum;Lee, Hyung-Yung
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.2
    • /
    • pp.277-287
    • /
    • 1996
  • Objective : It has been proposed that cognition and related aspects of mental functioning are decreased in depression as well as in alcoholism. The objective of the study was to compare behavioral side effects of paroxetine and amitriptyline in depressed patients accompanied by alcoholism. The focused comparisons were drug effects concerning psychomotor performance, cognitive function, sleep and daytime sleepiness during the first 2 weeks of treatment. Methods : After an alcohol detoxification period(3 weeks) and a washout period(1 week), a total of 20 male inpatients with alcohol use disorder (DSM-IV), who also had a major depressive episode(DSM-IV), were treated double-blind with paroxetine 20mg/day(n=10) or amitriptyline 25mg/day(n=10) for 2 weeks. All patients were required to have a scare of at least 18 respectively on bath the Hamilton Rating Scale far Depression(HAM-D) and Beck Depression Inventory(BDI) at pre-drug baseline. Patients randomized to paroxetine received active medication in the morning and placebo in the evening whereas those randomized to amitriptyline received active medication in the evening and placebo in the morning. All patients performed the various tasks in a test battery at baseline and at days 3, 7 and 14. The test battery included : critical flicker fusion threshold for sensory information processing capacity : choice reaction time for gross psychomotor performance : tracking accuracy and latency of response to peripheral stimulus as a measure of line sensorimotor co-ordination and divided attention : digit symbol substitution as a measure of sustained attention and concentration. To rate perceived sleep and daytime sleepiness, 10cm line Visual analogue scales were employed at baseline and at days 3, 7 and 14. The subjective rating scales were adapted far this study from Leeds sleep Evaluation Questionnaire and Epworth Sleepiness Scale. In addition a comprehensive side effect assessment, using the UKU side effect rating scale, was carried out at baseline and at days 7 and 14. The efficacy of treatment was evaluated using HAM-D, BDI and clinical global impression far severity and improvement at days 7 and 14. Results : The pattern of results indicated thai paroxetine improved performance an mast of the lest variables and also improved sleep with no effect on daytime sleepiness aver the study period. In contrast, amitriptyline produced disruption of performance on same tests and improved sleep with increased daytime sleepiness in particular at day 3. On the UKU side effect rating scale, mare side effects were registered an amitriptyline. The therapeutic efficacy was observed in favor of paroxetine early in day 7. Conclusion : These results demonstrated thai paroxetine in much better than amitriptyline for the treatment of depressed patients accompained by alcoholism at least in terms of behavioral safety and tolerability, furthermore the results may assist in explaining the therapeutic outcome of paroxetine. For example, and earlier onset of antidepressant action of paroxetine may be caused by early improved cognitive function or by contributing to good compliance with treatment.

  • PDF

Comparison of Characteristics of Electrodeposited Lithium Electrodes Under Various Electroplating Conditions (다양한 전착조건에서 제작된 리튬 전극의 특성 연구)

  • Lim, Rana;Lee, Minhee;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.128-137
    • /
    • 2019
  • A lithium is the lightest metal on the earth. It has some attractive characteristics as a negative electrode material such as a low reduction potential (-3.04 V vs. SHE) and a high theoretical capacity ($3,860mAh\;g^{-1}$). Therefore, it has been studied as a next generation anode material for high energy lithium batteries. The thin lithium electrode is required to maximize the efficiency and energy density of the battery, but the physical roll-press method has a limitation in manufacturing thin lithium. In this study, thin lithium electrode was fabricated by electrodeposition under various conditions such as compositions of electrolytes and the current density. Deposited lithium showed strong relationship between process condition and its characteristics. The concentration of electrolyte affects to the shape of deposited lithium particle. As the concentration increases, the shape of particle changes from a sharp edged long one to a rounded lump. The former shape is favorable for suppressing dendrite formation and the elec-trode shows good stripping efficiency of 92.68% (3M LiFSI in DME, $0.4mA\;cm^{-2}$). The shape of deposited particle also affected by the applied current density. When the amount of current applied gets larger the shape changes to the sharp edged long one like the case of the low concentration electrolyte. The combination of salts and solvents, 1.5M LiFSI + 1.5M LiTFSI in DME : DOL [1 : 1 vol%] (Du-Co), was applied to the electrolyte for the lithium deposition. The lithium electrode obtained from this electrolyte composition shows the best stripping efficiency (97.26%) and the stable reversibility. This is presumed to be due to the stability of the surface film induced by the Li-F component and the DOL effect of providing film flexibility.

Smart Electric Mobility Operating System Integrated with Off-Grid Solar Power Plants in Tanzania: Vision and Trial Run (탄자니아의 태양광 발전소와 통합된 전기 모빌리티 운영 시스템 : 비전과 시범운행)

  • Rhee, Hyop-Seung;Im, Hyuck-Soon;Manongi, Frank Andrew;Shin, Young-In;Song, Ho-Won;Jung, Woo-Kyun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.127-135
    • /
    • 2021
  • To respond to the threat of global warming, countries around the world are promoting the spread of renewable energy and reduction of carbon emissions. In accordance with the United Nation's Sustainable Development Goal to combat climate change and its impacts, global automakers are pushing for a full transition to electric vehicles within the next 10 years. Electric vehicles can be a useful means for reducing carbon emissions, but in order to reduce carbon generated in the stage of producing electricity for charging, a power generation system using eco-friendly renewable energy is required. In this study, we propose a smart electric mobility operating system integrated with off-grid solar power plants established in Tanzania, Africa. By applying smart monitoring and communication functions based on Arduino-based computing devices, information such as remaining battery capacity, battery status, location, speed, altitude, and road conditions of an electric vehicle or electric motorcycle is monitored. In addition, we present a scenario that communicates with the surrounding independent solar power plant infrastructure to predict the drivable distance and optimize the charging schedule and route to the destination. The feasibility of the proposed system was verified through test runs of electric motorcycles. In considering local environmental characteristics in Tanzania for the operation of the electric mobility system, factors such as eco-friendliness, economic feasibility, ease of operation, and compatibility should be weighed. The smart electric mobility operating system proposed in this study can be an important basis for implementing the SDGs' climate change response.

Effect of Lithium Bis(oxalate)borate as an Electrolyte Additive on Carbon-coated SiO Negative Electrode (탄소가 코팅된 일산화규소(SiO) 음극에서 전해질 첨가제로서 Lithium Bis(oxalato)borate의 영향)

  • Kim, Kun Woo;Lee, Jae Gil;Park, Hosang;Kim, Jongjung;Ryu, Ji Heon;Kim, Young-Ugk;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • As an electrolyte additive, the effects of lithium bis(oxalate)borate (LiBOB) on the electrochemical properties of a carbon-coated silicon monoxide (C-coated SiO) negative electrode are investigated. The used electrolyte is 1.3M $LiPF_6$ that is dissolved in ethylene carbonate (EC), fluoroethylene carbonate (FEC), and diethyl carbonate (DEC) (5:25:70 v/v/v) with or without 0.5 wt. % LiBOB. In the LiBOB-free electrolyte, the film resistance is not so high in the initial period of cycling that lithiation is facilitated to generate the crystalline $Li_{15}Si_4$ phase. Due to repeated volume change that is caused by such a deep charge/discharge, cracks form in the active material to cause a resistance increase, which eventually leads to capacity fading. When LiBOB is added into the electrolyte, however, more resistive surface film is generated by decomposition of LiBOB in the initial period. The crystalline $Li_{15}Si_4$ phase does not form, such that the volume change and crack formation are greatly mitigated. Consequently, the C-coated SiO electrode exhibits a better cycle performance in the later cycles. At an elevated temperature ($45^{\circ}C$), wherein the effect of film resistance is less critical, the alloy ($Li_{15}Si_4$ phase) formation is comparable for the LiBOB-free and added cell to give a similar cycle performance.

Analysis for Atomic Structural Deterioration and Electrochemical Properties of Li-rich Cathode Materials for Lithium Ion Batteries (리튬이차전지용 리튬과잉계 양극 산화물의 충방전 과정 중 원자 구조 열화 과정과 전기화학 특성에 대한 분석)

  • Park, Seohyeon;Oh, Pilgun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.97-102
    • /
    • 2020
  • Recently, various degradation mechanisms of lithium secondary battery cathode materials have been revealed. As a result, many studies on overcoming the limitation of cathode materials and realizing new electrochemical properties by controlling the degradation mechanism have been reported. Li-rich layered oxide is one of the most promising cathode materials due to its high reversible capacity. However, the utilization of Li-rich layered oxide has been restricted, because it undergoes a unique atomic structure change during the cycle, in turn resulting in unwanted electrochemical degradations. To understand an atomic structure deterioration mechanism and suggest a research direction of Li-rich layered oxide, we deeply evaluated the atomic structure of 0.4Li2MnO3_0.6LiNi1/3Co1/3Mn1/3O2 Li-rich layered oxide during electrochemical cycles, by using an atomic-resolution analysis tool. During a charge process, Li-rich materials undergo a cation migration of transition metal ions from transition metal slab to lithium slab due to the structural instability from lithium vacancies. As a result, the partial structural degradation leads to discharge voltage drop, which is the biggest drawback of Li-rich materials.

Microstructures and Electrochemical Properties of Si-M (M : Cr, Ni) as Alloy Anode for Li Secondary Batteries (리튬이차전지용 Si-M (M : Cr, Ni) 합금 음극의 미세구조와 전기화학적 특성)

  • Lee, Sung-Hyun;Sung, Jewook;Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • To compare the microstructure and electrochemical properties between two binary alloys (Cr-Si, Ni-Si), two composition of binary alloys with the same capacity were selected using phase-diagram and prepared by matrix-stabilization method to suppress the volume expansion of Si by inactive-matrix. Master alloys were made by Arc-melting followed by fine structured ribbon sample preparation by Rapid Solidification Process (RSP, Melt-spinning method) under the same conditions. Also powder samples were produced by wet grinding for X-Ray Diffraction (XRD) and electrochemical measurements. As predicted from the phase diagram, only active-Si and inactive-matrix ($CrSi_2$, $NiSi_2$) were detected. The results of Scanning Electron Microscope (SEM) and Transmission Electron Microscopy - Energy Dispersive X-ray Spectroscopy (TEM-EDS) show that Cr-Si alloy has finer microstructure than Ni-Si alloy, which was also predictable through phase diagram. The electrochemical properties related to microstructure were evaluated by coin type full- and half-cells. Separately, self-designed test-cells were used to measure the volume expansion of Si during reaction. Volume expansion of Cr-Si alloy electrode with finer microstructure was suppressed significantly and improved in cycle capability, in comparison Ni-Si alloy with coarse microstructure. From these, we could infer the correlation of microstructure, volume expansion and electrochemical degradation and these properties might be predicted by phase diagram.

Key Update Protocols in Hierarchical Sensor Networks (계층적 센서 네트워크에서 안전한 통신을 위한 키 갱신 프로토콜)

  • Lee, Joo-Young;Park, So-Young;Lee, Sang-Ho
    • The KIPS Transactions:PartC
    • /
    • v.13C no.5 s.108
    • /
    • pp.541-548
    • /
    • 2006
  • Sensor network is a network for realizing the ubiquitous computing circumstances, which aggregates data by means of observation or detection deployed at the inaccessible places with the capacities of sensing and communication. To realize this circumstance, data which sensor nodes gathered from sensor networks are delivered to users, in which it is required to encrypt the data for the guarantee of secure communications. Therefore, it is needed to design key management scheme for encoding appropriate to the sensor nodes which feature continual data transfer, limited capacity of computation and storage and battery usage. We propose a key management scheme which is appropriate to sensor networks organizing hierarchical architecture. Because sensor nodes send data to their parent node, we can reduce routing energy. We assume that sensor nodes have different security levels by their levels in hierarchy. Our key management scheme provides different key establishment protocols according to the security levels of the sensor nodes. We reduce the number of sensor nodes which share the same key for encryption so that we reduce the damage by key exposure. Also, we propose key update protocols which take different terms for each level to update established keys efficiently for secure data encoding.

Data Congestion Control Using Drones in Clustered Heterogeneous Wireless Sensor Network (클러스터된 이기종 무선 센서 네트워크에서의 드론을 이용한 데이터 혼잡 제어)

  • Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae;Kim, Bum-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.12-19
    • /
    • 2020
  • The clustered heterogeneous wireless sensor network is comprised of sensor nodes and cluster heads, which are hierarchically organized for different objectives. In the network, we should especially take care of managing node resources to enhance network performance based on memory and battery capacity constraints. For instances, if some interesting events occur frequently in the vicinity of particular sensor nodes, those nodes might receive massive amounts of data. Data congestion can happen due to a memory bottleneck or link disconnection at cluster heads because the remaining memory space is filled with those data. In this paper, we utilize drones as mobile sinks to resolve data congestion and model the network, sensor nodes, and cluster heads. We also design a cost function and a congestion indicator to calculate the degree of congestion. Then we propose a data congestion map index and a data congestion mapping scheme to deploy drones at optimal points. Using control variable, we explore the relationship between the degree of congestion and the number of drones to be deployed, as well as the number of drones that must be below a certain degree of congestion and within communication range. Furthermore, we show that our algorithm outperforms previous work by a minimum of 20% in terms of memory overflow.