DOI QR코드

DOI QR Code

Effect of Lithium Bis(oxalate)borate as an Electrolyte Additive on Carbon-coated SiO Negative Electrode

탄소가 코팅된 일산화규소(SiO) 음극에서 전해질 첨가제로서 Lithium Bis(oxalato)borate의 영향

  • Kim, Kun Woo (Technology team, Samsung SDI Co., Ltd.) ;
  • Lee, Jae Gil (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Park, Hosang (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Kim, Jongjung (Department of Chemical and Biological Engineering, Seoul National University) ;
  • Ryu, Ji Heon (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University) ;
  • Kim, Young-Ugk (Energy 1-Lab., Samsung SDI Co. Ltd.) ;
  • Oh, Seung M. (Department of Chemical and Biological Engineering, Seoul National University)
  • 김건우 (삼성SDI 전지사업부) ;
  • 이재길 (서울대학교 화학생물공학부) ;
  • 박호상 (서울대학교 화학생물공학부) ;
  • 김종정 (서울대학교 화학생물공학부) ;
  • 류지헌 (한국산업기술대학교 지식기술기반 에너지대학원) ;
  • 김영욱 (삼성SDI 중앙연구소) ;
  • 오승모 (서울대학교 화학생물공학부)
  • Received : 2013.12.23
  • Accepted : 2014.01.22
  • Published : 2014.02.28

Abstract

As an electrolyte additive, the effects of lithium bis(oxalate)borate (LiBOB) on the electrochemical properties of a carbon-coated silicon monoxide (C-coated SiO) negative electrode are investigated. The used electrolyte is 1.3M $LiPF_6$ that is dissolved in ethylene carbonate (EC), fluoroethylene carbonate (FEC), and diethyl carbonate (DEC) (5:25:70 v/v/v) with or without 0.5 wt. % LiBOB. In the LiBOB-free electrolyte, the film resistance is not so high in the initial period of cycling that lithiation is facilitated to generate the crystalline $Li_{15}Si_4$ phase. Due to repeated volume change that is caused by such a deep charge/discharge, cracks form in the active material to cause a resistance increase, which eventually leads to capacity fading. When LiBOB is added into the electrolyte, however, more resistive surface film is generated by decomposition of LiBOB in the initial period. The crystalline $Li_{15}Si_4$ phase does not form, such that the volume change and crack formation are greatly mitigated. Consequently, the C-coated SiO electrode exhibits a better cycle performance in the later cycles. At an elevated temperature ($45^{\circ}C$), wherein the effect of film resistance is less critical, the alloy ($Li_{15}Si_4$ phase) formation is comparable for the LiBOB-free and added cell to give a similar cycle performance.

탄소가 코팅된 일산화규소(C-coated SiO) 전극에서 전해질 첨가제로서 lithium bis(oxalato)borate(LiBOB)의 영향을 조사하였다. 전해질 조성은 1.3M $LiPF_6$/ethylene carbonate (EC), fluoroethylene carbonate (FEC), diethyl carbonate (DEC) (5:25:70 v/v/v)이며, 여기에 LiBOB을 0.5 wt.% 첨가한 것과 첨가하지 않은 2가지 전해질을 사용하였다. LiBOB을 첨가하지 않은 전해질에서 C-coated SiO 전극은 초기에 저항이 작은 피막이 형성되어 결정질의 $Li_{15}Si_4$를 형성할 때까지 합금화가 진행되며 동시에 큰 부피 변화를 보였다. 따라서 입자의 균열이 발생하고, 전극의 저항이 증가하여 충방전이 진행됨에 따라 용량이 빠르게 감소하였다. 반면에 LiBOB이 첨가된 전해질에서는 초기에 LiBOB의 환원분해에 의해 저항이 큰 피막이 형성되어, 합금화 반응이 원활히 진행되지 못하였다. 따라서 결정질 $Li_{15}Si_4$도 생성되지 못하였고, 결과적으로 부피변화도 적게 발생하므로 입자의 균열과 전극 저항의 증가도 적게 나타났다. 이러한 효과로 싸이클 후반부에서 용량감소가 적었고, 싸이클 성능도 좋은 결과를 보였다. 반면 피막 저항에 의한 영향이 줄어드는 $45^{\circ}C$ 에서는 LiBOB 첨가에 관계없이 합금화 반응이 유사하게 진행되며 비슷한 싸이클 성능을 나타내었다.

Keywords

References

  1. H. Li, X. Huang, L. Chen, Z. Wu and Y. Liang, 'A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries' Electrochem. Solid-State Lett., 2, 547 (1999). https://doi.org/10.1149/1.1390899
  2. M. T. McDowell, S. W. Lee, I. Ryu, H. Wu, W. D. Nix, J. W. Choi and Y. Cui, 'Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes' Nano Lett., 11, 4018 (2011). https://doi.org/10.1021/nl202630n
  3. S. Xun, X. Song, M. E. Grass, D. K. Roseguo, Z. Liu, V. S. Battaglia and G. Liu, 'Improved Initial Performance of Si Nanoparticles by Surface Oxide Reduction for Lithium-Ion Battery Application' Electrochem. Solid-State Lett., 14, A61 (2011). https://doi.org/10.1149/1.3559765
  4. N. Dimov, S. Kugino and M. Yoshio, 'Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations' Electrochim. Acta, 48, 1579 (2003). https://doi.org/10.1016/S0013-4686(03)00030-6
  5. T. D. Hatchard, J. M. Topple, M. D. Fleischauer and J. R. Dahn, 'Electrochemical Performance of SiAlSn Films Prepared by Combinatorial Sputtering' Electrochem. Solid-State Lett., 6, A129 (2003). https://doi.org/10.1149/1.1574231
  6. M. Miyachi, H. Yamamoto, H. Kawai, T. Ohta and M. Shirakata, 'Analysis of SiO Anodes for Lithium-Ion Batteries' J. Electrochem. Soc., 152, A2089 (2005). https://doi.org/10.1149/1.2013210
  7. S.-H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.-P. Guo and H.-K. Liu, 'Highly Reversible Lithium Storage in Spheroidal Carbon-Coated Silicon Nanocomposites as Anodes for Lithium-Ion Batteries' Angew. Chem. Int. Ed., 45, 6896 (2006). https://doi.org/10.1002/anie.200601676
  8. J. M. Yan, H. Z. Huang, J. Zhang and Y. Yang, 'The study of Mg2Si/carbon composites as anode materials for lithium ion batteries' J. Power Sources, 175, 547 (2008). https://doi.org/10.1016/j.jpowsour.2007.06.074
  9. D. Mazouzi, B. Lestriez, L. Roue and D. Guyomard, 'Silicon Composite Electrode with High Capacity and Long Cycle Life' Electrochem. Solid-State Lett., 12, A215 (2009). https://doi.org/10.1149/1.3212894
  10. B. Lestriez, S. Bahri, I. Sandu, L. Roue and D. Guyomard, 'On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries' Electrochem. Commun., 9, 2801 (2007). https://doi.org/10.1016/j.elecom.2007.10.001
  11. A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov and G. Yushin, 'Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid' ACS Appl. Mater. Inter., 2, 3004 (2010). https://doi.org/10.1021/am100871y
  12. S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui and K. Konno, 'Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries' The Journal of Physical Chemistry C, 115, 13487 (2011). https://doi.org/10.1021/jp201691g
  13. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, 'A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries' Science, 334, 75 (2011). https://doi.org/10.1126/science.1209150
  14. N.-S. Choi, K. H. Yew, H. Kim, S.-S. Kim and W.-U. Choi, 'Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte' J. Power Sources, 172, 404 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.058
  15. G.-B. Han, M.-H. Ryou, K. Y. Cho, Y. M. Lee and J.-K. Park, 'Effect of succinic anhydride as an electrolyte additive on electrochemical characteristics of silicon thinfilm electrode' J. Power Sources, 195, 3709 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.142
  16. V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching and D. Aurbach, 'Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes' Langmuir, 28, 965 (2011).
  17. J.-W. Song, C. C. Nguyen and S.-W. Song, 'Stabilized cycling performance of silicon oxide anode in ionic liquid electrolyte for rechargeable lithium batteries' RSC Advances, 2, 2003 (2012). https://doi.org/10.1039/c2ra01183b
  18. T. Kim, S. Park and S. M. Oh, 'Solid-State NMR and Electrochemical Dilatometry Study on Li+ Uptake/Extraction Mechanism in SiO Electrode' J. Electrochem. Soc., 154, A1112 (2007). https://doi.org/10.1149/1.2790282
  19. J.-H. Kim, C.-M. Park, H. Kim, Y.-J. Kim and H.-J. Sohn, 'Electrochemical behavior of SiO anode for Li secondary batteries' J. Electroanal. Chem., 661, 245 (2011). https://doi.org/10.1016/j.jelechem.2011.08.010
  20. L. Chen, K. Wang, X. Xie and J. Xie, 'Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries' J. Power Sources, 174, 538 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.149
  21. S. Dalavi, P. Guduru and B. L. Lucht, 'Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes' J. Electrochem. Soc., 159, A642 (2012). https://doi.org/10.1149/2.076205jes
  22. K. Xu, S. S. Zhang, U. Lee, J. L. Allen and T. R. Jow, 'LiBOB: Is it an alternative salt for lithium ion chemistry?' J. Power Sources, 146, 79 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.153
  23. Z. Chen, W. Q. Lu, J. Liu and K. Amine, 'LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries' Electrochim. Acta, 51, 3322 (2006). https://doi.org/10.1016/j.electacta.2005.09.027
  24. J.-C. Panitz, U. Wietelmann, M. Wachtler, S. Strobele and M. Wohlfahrt-Mehrens, 'Film formation in LiBOB-containing electrolytes' J. Power Sources, 153, 396 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.025
  25. D.-T. Shieh, P.-H. Hsieh and M.-H. Yang, 'Effect of mixed LiBOB and LiPF6 salts on electrochemical and thermal properties in LiMn2O4 batteries' J. Power Sources, 174, 663 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.152
  26. D. Aurbach, 'Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries' J. Power Sources, 89, 206 (2000). https://doi.org/10.1016/S0378-7753(00)00431-6
  27. I. Choi, M. J. Lee, S. M. Oh and J. J. Kim, 'Fading mechanisms of carbon-coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: Dynamics and component analysis by TEM' Electrochim. Acta, 85, 369 (2012). https://doi.org/10.1016/j.electacta.2012.08.098
  28. T. D. Hatchard and J. R. Dahn, 'In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon' J. Electrochem. Soc., 151, A838 (2004). https://doi.org/10.1149/1.1739217
  29. M. N. Obrovac and L. Christensen, 'Structural Changes in Silicon Anodes during Lithium Insertion/Extraction' Electrochem. Solid-State Lett., 7, A93 (2004). https://doi.org/10.1149/1.1652421
  30. L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer and J. R. Dahn, 'Reaction of Li with alloy thin films studied by in situ AFM' J. Electrochem. Soc., 150, A1457 (2003). https://doi.org/10.1149/1.1613668
  31. J. H. Ryu, J. W. Kim, Y.-E. Sung and S. M. Oh, 'Solid-State NMR and Electrochemical Dilatometry Study on Li+ Uptake/Extraction Mechanism in SiO Electrode' Electrochem. Solid-State Lett., 7, A306 (2004). https://doi.org/10.1149/1.1792242

Cited by

  1. Poly(phenanthrenequinone)-Poly(acrylic acid) Composite as a Conductive Polymer Binder for Submicrometer-Sized Silicon Negative Electrodes vol.19, pp.3, 2016, https://doi.org/10.5229/JKES.2016.19.3.87