DOI QR코드

DOI QR Code

Hydrocarbon Composite Membranes with Improved Oxidative Stability for PEMFC

산화안정성 향상을 위한 고분자연료전지용 탄화수소복합막의 제조 및 특성연구

  • Lee, Hyejin (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Choi, Young-Woo (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Yang, Tae-Hyun (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Bae, Byungchan (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
  • 이혜진 (한국에너지기술연구원 수소연료전지연구실) ;
  • 최영우 (한국에너지기술연구원 수소연료전지연구실) ;
  • 양태현 (한국에너지기술연구원 수소연료전지연구실) ;
  • 배병찬 (한국에너지기술연구원 수소연료전지연구실)
  • Received : 2013.01.14
  • Accepted : 2014.02.04
  • Published : 2014.02.28

Abstract

Sulfonated poly(arylene ether sulfone)-cerium composite membranes with improved oxidative stability were prepared for proton exchange membrane fuel cell application. Oxidative stability of the composite membranes changed depending on the amount of incorporated metal. Their water uptake, IEC and proton conductivity were also affected. ICP analysis confirmed trace of cerium ion in the composite membranes and $^1H$-NMR indicated successful coordination of sulfonic acid groups with the metal ions. Increasing amount of the cerium ion resulted in decrease in proton conductivities and water uptake, but enhanced oxidative stabilities. A hydrogen peroxide exposure equipment was used for the test of oxidative stability of the composite membranes, which enabled to mimic fuel cell operating condition compared with conventional Fenton's test.

양성자교환막연료전지에서 사용할 탄화수소계 전해질 막 (술폰산화 폴리아릴렌에테르설폰)의 산화안정성을 향상시키기 위하여 세륨이온이 도입된 전해질 복합막을 제조하였다. 세륨이온의 함유 농도에 따른 산화안정성의 변화를 관찰하였고, 함수율 및 수소이온전도도에 미치는 영향을 조사하였다. ICP 분석을 통해 세륨이온의 함침여부를 검증하였고, NMR 피크의 화학적 이동으로 금속이온과 술폰산 그룹과의 배위여부를 확인하였다. 세륨이온의 함량이 증가함에 따라 이온전도도 및 함수율은 감소하였으나, 산화안정성은 향상되었다. 특히, 과산화수소폭로 가속화장치를 이용하여, 기존의 펜톤산화실험에 비해 실제 연료전지운전과 매우 유사한 조건에서 전해질 막의 산화안정성을 평가하였다.

Keywords

References

  1. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla and J. E. McGrath, 'Alternative Polymer Systems for Proton Exchange Membranes (PEMs)' Chem. Rev., 104, 4587 (2004). https://doi.org/10.1021/cr020711a
  2. M.-S. Shin and J.-S. Park, 'Preparation and Characterization of Nafion Composite Membranes Containing 1-ethyl-3-methylimidazolium Tetracyanoborate' J. Kor. Electrochem. Soc., 15, 35 (2012). https://doi.org/10.5229/JKES.2012.15.1.035
  3. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski and J. E. McGrath, 'Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes' J. Membr. Sci., 197, 231 (2002). https://doi.org/10.1016/S0376-7388(01)00620-2
  4. B. Bae, T. Yoda, K. Miyatake, H. Uchida and M. Watanabe, 'Proton-Conductive Aromatic Ionomers Containing Highly Sulfonated Blocks for High-Temperature-Operable Fuel Cells' Angew. Chem. Int. Ed., 49, 317 (2010). https://doi.org/10.1002/anie.200905355
  5. H. Zhang and P. K. Shen, 'Recent Development of Polymer Electrolyte Membranes for Fuel Cells' Chem. Rev., 112, 2780 (2012). https://doi.org/10.1021/cr200035s
  6. M. Pianca, E. Barchiesi, G. Esposto and S. Radice, 'End groups in Fluoropolymers' J. Fluor. Chem., 95, 71 (1999). https://doi.org/10.1016/S0022-1139(98)00304-2
  7. D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman, and M. E. Tisack, 'Advanced materials for improved PEMFC performance and life' J. Power Sources, 2, 41 (2004).
  8. E. Endoh, W. Vielstich, H. Yokokawa, and H. A. Gasteiger, "Highly Durable PFSA Membranes" in "Handbook of Fuel Cells:Advances in Electrocatalysis, Materials, Diagnostics and Durability", 361, John Wiley & Sons, Chichester (2009).
  9. E. Endoh, N. Onoda, Y. Kaneko, Y. Hasegawa, S. Uchiike, Y. Takagi and Tetsuo Take 'Membrane Degradation Mitigation of PEFC during Cold-Start Application of the Radical Quencher $Ce^{3+}-$' ECS Electrochemistry Letters, 2, F73 (2013). https://doi.org/10.1149/2.004310eel
  10. M. Danilczuk, S. Schlick and F. D. Coms, 'Cerium(III) as a Stabilizer of Perfluorinated Membranes Used in Fuel Cells: In Situ Detection of Early Events in the ESR Resonator' Macromolecules, 42, 8943 (2009). https://doi.org/10.1021/ma9017108
  11. B. P. Pearman, N. Mohajeri, R. P. Brooker, M. P. Rodgers, D. K. Slattery, M. D. Hampton, D. A. Cullen and S. Seal, 'The degradation mitigation effect of cerium oxide in polymer electrolyte membranes in extended fuel cell durability tests' J. Power Sources, 225, 75 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.015

Cited by

  1. Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells vol.19, pp.3, 2016, https://doi.org/10.5229/JKES.2016.19.3.107
  2. Hydrocarbon-Organic Composite Membranes for Improved Oxidative Stability for PEMFC Applications vol.19, pp.2, 2016, https://doi.org/10.5229/JKES.2016.19.2.45
  3. Synthesis and Characterization of Multi-Block Sulfonated Poly (Arylene Ether Sulfone) Polymer Membrane with Different Hydrophilic Moieties for PEMFC vol.18, pp.2, 2015, https://doi.org/10.5229/JKES.2015.18.2.75
  4. Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability vol.295, 2015, https://doi.org/10.1016/j.jpowsour.2015.07.001
  5. Decal Transfer Method of Hydrocarbon Membranes for Fabricating a Membrane Electrode Assembly (MEA) vol.13, pp.3, 2017, https://doi.org/10.7849/ksnre.2017.9.13.3.051