• Title/Summary/Keyword: Batch process

Search Result 1,275, Processing Time 0.024 seconds

Influence of Reactive Media Composition and Chemical Oxygen Demand as Methanol on Autotrophic Sulfur Denitrification

  • Qambrani, Naveed Ahmed;Oh, Sang-Eun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1155-1160
    • /
    • 2012
  • Sulfur-utilizing autotrophic denitrification relies on an inorganic carbon source to reduce the nitrate by producing sulfuric acid as an end product and can be used for the treatment of wastewaters containing high levels of nitrates. In this study, sulfur-denitrifying bacteria were used in anoxic batch tests with sulfur as the electron donor and nitrate as the electron acceptor. Various medium components were tested under different conditions. Sulfur denitrification can drop the medium pH by producing acid, thus stopping the process half way. To control this mechanism, a 2:1 ratio of sulfur to oyster shell powder was used. Oyster shell powder addition to a sulfur-denitrifying reactor completely removed the nitrate. Using 50, 100, and 200 g of sulfur particles, reaction rate constants of 5.33, 6.29, and $7.96mg^{1/2}/l^{1/2}{\cdot}h$ were obtained, respectively; and using 200 g of sulfur particles showed the highest nitrate removal rates. For different sulfur particle sizes ranging from small (0.85-2.0 mm), medium (2.0-4.0 mm), and large (4.0-4.75 mm), reaction rate constants of 31.56, 10.88, and $6.23mg^{1/2}/l^{1/2}{\cdot}h$ were calculated. The fastest nitrate removal rate was observed for the smallest particle size. Addition of chemical oxygen demand (COD), methanol as the external carbon source, with the autotrophic denitrification in sufficiently alkaline conditions, created a balance between heterotrophic denitrification (which raises the pH) and sulfur-utilizing autotrophic denitrification, which lowers the pH.

Solid-State Fermentation for the Production of Meroparamycin by Streptomyces sp. strain MAR01

  • El-Naggar, Moustafa Y.;El-Assar, Samy A.;Abdul-Gawad, Sahar M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.468-473
    • /
    • 2009
  • The antibiotic meroparamycin was produced in the free culture system of Streptomyces sp. strain MAR01. Five solid substrates (rice, wheat bran, Quaker, bread, and ground corn) were screened for their ability to support meroparamycin production in solid-state fermentation. In batch culture, wheat bran recorded the highest antibacterial activity with the lowest residual substrate values. The highest residual substrate values were recorded for both ground corn and Quaker. On the other hand, no antibacterial activity was detected for rice as a solid substrate. The use of the original strength of starch-nitrate medium in the solid-state fermentation gave a lower antibacterial activity compared with the free culture system. Doubling the strength of this medium resulted in the increase in the activity to be equivalent to the free culture. The initial pH (7.0) of the culture medium and 2 ml of spore suspension (1 ml contains $5{\times}10^{9}spores/ml$) were the optima for antibiotic production. The water was the best eluent for the extraction of the antibiotic from the solid-state culture. Ten min was enough time to extract the antibiotic using a mixer, whereas, 60 min was required when shaking was applied. Semicontinuous production of meroparamycin using a percolation method demonstrated a more or less constant antibacterial activity over 4 runs ($450-480{\mu}g/ml$). The semicontinuous production of the antibiotic was monitored in a fixed-bed bioreactor and the maximum activity was attained after the fourth run ($510{\mu}g/ml$) and the overall process continued for 85 days.

A study of Ozone Oxidation of Methylene Blue (Methylene Blue의 오존(O3) 산화반응에 관한 연구)

  • Lee, Cheal-Gyu;Kim, Moon-Chan
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.366-371
    • /
    • 2005
  • In this study treatment efficiencies of methylene blue were evaluated in term of BOD, COD, TOC, absorbance and initial decolorization rates. Ozonation of the dye in distilled water was performed in a laboratory scale cylindrical batch reactor. The decolorization process of methylene blue was carried out by bubbling ozone at the bottom of a bubble column reactor containing the dye solution. Decolorization, determined by measuring the light absorbance at the maximum wavelength in the (${\lambda}_{max}$, 660 nm), was almost complete after 40 min with an ozone concentration of $50{\pm}10mg/L$. The $TOC/TOC_0$ ratio after ozonation was about 83.8%, the COD was diminished to 44.0% of the initial value. The $BOD_5/COD$ ratio was increased from 64.2% to about 90.8%, indicating an enhancement of biodegradable compounds in the ozonated solutions. The pseudo first-order rate constants of the ozonation was $3.30{\times}10^{-2}min^{-1}$ and the activation energy was $3.01kcal{\cdot}mol^{-1}$ at $30^{\circ}C$.

High Cell Density Cultivation of Bifidobacterium longum Using a Calcium Carbonate-Alginate Beads System

  • Yu, Won-Kyu;Kim, Ji-Youn;Lee, Ki-Yong;Heo, Tae-Ryeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.444-448
    • /
    • 2002
  • A $CaCO_3$-alginate beads system was developed for high cell density cultivation of Bifidobacterium longum and the cost-effective media were also screened. In batch process with $CaCO_3$, beads, two strains of B. longum showed both the highest viable cells and optical density in TPY medium, resulting in maximum optical density and viable cell counts of 12.40, $2.22{\times}10^10$ cfu/ml for B. longum ATCC 15707 and 13.71, $3.93{\times}10^10$ cfu/ml for B. longum HLC 3742. Released size distribution, according to $CaCO_3$-alginate bead size preparation, was smaller than others. These results were also examined by observing their morphology. The skim milk-based medium was most adequate to cultivate B. longum as the cheapest medium, and $10\%$ skim milk supplemented with $2\%$ glucose and $1\%$ yeast extract was a suitable medium, supporting the growth to $5.57{\times}10^10$ cfu/ml for ATCC 15707 and $6.82{\times}10^9$ cfu/ml for HLC 3742. During the long-term storage at $4^{\circ}C\;and\;-20{\circ}C$, B. longum cultivated with $CaCO_3$ beads had the highest stability. Consequently, $CaCO_3$-alginate beads buffer was found to be useful not only to cultivate B. longum but also to preserve cultures.

Two-Stage Fermentation for 2-Ketogluconic Acid Production by Klebsiella pneumoniae

  • Sun, Yuehong;Wei, Dong;Shi, Jiping;Mojovic, Ljiljana;Han, Zengsheng;Hao, Jian
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.781-787
    • /
    • 2014
  • 2-Ketogluconic acid production by Klebsiella pneumoniae is a pH-dependent process, strictly proceeding under acidic conditions. Unfortunately, cell growth is inhibited by acidic conditions, resulting in low productivity of 2-ketogluconic acid. To overcome this deficiency, a two-stage fermentation strategy was exploited in the current study. During the first stage, the culture was maintained at neutral pH, favoring cell growth. During the second stage, the culture pH was switched to acidic conditions favoring 2-ketogluconic acid accumulation. Culture parameters, including switching time, dissolved oxygen levels, pH, and temperature were optimized for the fed-batch fermentation. Characteristics of glucose dehydrogenase and gluconate dehydrogenase were revealed in vitro, and the optimal pHs of the two enzymes coincided with the optimum culture pH. Under optimum conditions, a total of 186 g/l 2-ketogluconic acid was produced at 26 h, and the conversion ratio was 0.98 mol/mol. This fermentation strategy has successfully overcome the mismatch between optimum parameters required for cell growth and 2-ketogluconic acid accumulation, and this result has the highest productivity and conversion ratio of 2-ketogluconic and produced by microorganism.

Enhanced Lipid Production of Chlorella sp. HS2 Using Serial Optimization and Heat Shock

  • Kim, Hee Su;Kim, Minsik;Park, Won-Kun;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.136-145
    • /
    • 2020
  • Chlorella sp. HS2, which previously showed excellent performance in phototrophic cultivation and has tolerance for wide ranges of salinity, pH, and temperature, was cultivated heterotrophically. However, this conventional medium has been newly optimized based on a composition analysis using elemental analysis and ICP-OES. In addition, in order to maintain a favorable dissolved oxygen level, stepwise elevation of revolutions per minute was adopted. These optimizations led to 40 and 13% increases in the biomass and lipid productivity, respectively (7.0 and 2.25 g l-1d-1 each). To increase the lipid content even further, 12 h heat shock at 50℃ was applied and this enhanced the biomass and lipid productivity up to 4 and 17% respectively (7.3 and 2.64 g l-1d-1, each) relative to the optimized conditions above, and the values were 17 and 14% higher than ordinary lipid-accumulating N-limitation (6.2 and 2.31 g l-1d-1). On this basis, heat shock was successfully adopted in novel Chlorella sp. HS2 cultivation as a lipid inducer for the first time. Considering its fast and cost-effective characteristics, heat shock will enhance the overall microalgal biofuel production process.

Study on desorption characteristics by mixed resins of active carbons and ion exchange resins for perchlorate ion (이온교환수지와 활성탄의 혼합수지를 이용한 과염소산 이온의 탈착 특성 연구)

  • Kim, Young-Eun;Jeong, Yu-Dong;Kim, Sun Hwan;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • Perchlorate ($ClO{_4}^-$) is the material that is used as propellants of rockets and material of explosive as a form of ammonium perchlorate salts. Ammonium perchlorate solution of high concentration is recovered from expired rocket through demilitarization process by the water-jet method. If people take perchlorate in food and water, it interferes with adsorption of iodide which is the substance needed to synthesize thyroid hormone in the thyroid gland. It has an bad influence upon disturbing pregnancy and synthesis of growth hormone. So the effective method is necessary to remove perchlorate anion in water. By considering economic aspect, we studied effective desorption (regeneration) of perchlorate anion from adsorbent with studies on removal and adsorption of perchlorate anion. Desorption experiment was conducted as batch type. Depending on various conditions (concentration, pH, cation anion form) elution, we evaluated amount, efficiency of desorption(amount of adsorption/desorption ${\times}$ 100). Also, research confirmed the efficiency of mixed resins between anion exchange resin and activated carbon and expected synergic effect from advantages of both adsorbents.

The Evaluation of Electrolytic Nitrate Removal Efficiency of TiO2 Nanotube Plate (TiO2 nanotube plate의 질산성질소 전기분해 효율 평가)

  • Kim, Da Eun;Lee, Yongho;Han, Heeju;Choi, Hyo yeon;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.612-621
    • /
    • 2018
  • In this study, $TiO_2$ nanotube plate and metal electrodes(Copper, Nickel, Stainless Steel, Aluminum, Tin, Titanium) were compared on cathodic reduction of nitrate ($NO_3{^-}-N$) during electrolysis. The electrochemical characteristics were compared based on electrochemical impedance spectroscopy (EIS). The surface morphology was obtained using scanning electron microscopy (SEM) method. Brunauer-Emmett-Teller (BET) method was implemented for the specific surface area analysis of the cathodes. To study kinetics, 90 minute batch electrolysis of nitrate solution was performed for each cathodes. In conclusion, under the condition of relatively low ($0.04 A\;cm^{-2}$) current density, $TiO_2$ nanotube plate showed no surface corrosion during the electrolysis, and the reaction rate was measured the highest in the kinetic analysis.

Study on the Non-isothermal Crystallization Behavior of Polypropylene/Corn Starch-MB Blends (폴리프로필렌/옥수수전분 블렌드의 비등온결정화 거동 연구)

  • Kim, Youn-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1125-1129
    • /
    • 2008
  • Polypropylene (PP)/corn starch master batch(starch-MB) blends with different PP compositions of 90, 80, 70, and 60 wt% were prepared by melt compounding at $200^{\circ}C$, using lab scale Brabender mixer. The chemical structures, thermal properties and non-isothermal crystallization behavior of the PP/starch-MB blends were investigated by FT-infrared spectrometry (FT-IR), differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA). The fabrication of the PP/starch-MB blend was confirmed by the existence of hydroxy group in FT-IR spectrum. There was no district change in melting temperature and melting enthalpy, and TGA curve indicates a decrease in degradation temperature with starch-MB content. The non-isothermal crystallization process was analyzed using by Avrami equation. The Avrami exponents were in the range of 2.71-3.97 for PP and 1.48-1.99 for PP/starch-MB blonds. The activation energies calculated by Kissinger method were 233 kJ/mol for PP, 484 kJ/mol for PP90, 541 kJ/mol for PP80, 553 kJ/mol for PP70, and 422 kJ/mol for PP60.

Optimization of uranium biosorption in solutions by Sargassum boveanum using RSM method

  • Hashemi, Nooshin;Dabbagh, Reza;Noroozi, Mostafa;Baradaran, Sama
    • Advances in environmental research
    • /
    • v.9 no.1
    • /
    • pp.65-84
    • /
    • 2020
  • The potential use of Sargassum boveanum algae for the removal of uranium from aqueous solution has been studied by varying three independent parameters (pH, initial uranium ion concentration, S. boveanum dosage) using a central composite design (CCD) under response surface methodology (RSM). Batch mode experiments were performed in 20 experimental runs to determine the maximum metal adsorption capacity. In CCD design, the quantitative relationship between different levels of these parameters and heavy metal uptake (q) were used to work out the optimized levels of these parameters. The analysis of variance (ANOVA) of the proposed quadratic model revealed that this model was highly significant (R2 = 0.9940). The best set required 2.81 as initial pH(on the base of design of experiments method), 1.01 g/L S. boveanum and 418.92 mg/L uranium ion concentration within 180 min of contact time to show an optimum uranium uptake of 255 mg/g biomass. The biosorption process was also evaluated by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models represented that the experimental data fitted to the Langmuir isotherm model of a suitable degree and showed the maximum uptake capacity of 500 mg/g. FTIR and scanning electron microscopy were used to characterize the biosorbent and implied that the functional groups (carboxyl, sulfate, carbonyl and amine) were responsible for the biosorption of uranium from aqueous solution. In conclusion, the present study showed that S. boveanum could be a promising biosorbent for the removal of uranium pollutants from aqueous solutions.