DOI QR코드

DOI QR Code

Enhanced Lipid Production of Chlorella sp. HS2 Using Serial Optimization and Heat Shock

  • Kim, Hee Su (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Minsik (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Won-Kun (Department of Chemistry and Energy Engineering, Sangmyung University) ;
  • Chang, Yong Keun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2019.10.15
  • Accepted : 2019.10.27
  • Published : 2020.01.28

Abstract

Chlorella sp. HS2, which previously showed excellent performance in phototrophic cultivation and has tolerance for wide ranges of salinity, pH, and temperature, was cultivated heterotrophically. However, this conventional medium has been newly optimized based on a composition analysis using elemental analysis and ICP-OES. In addition, in order to maintain a favorable dissolved oxygen level, stepwise elevation of revolutions per minute was adopted. These optimizations led to 40 and 13% increases in the biomass and lipid productivity, respectively (7.0 and 2.25 g l-1d-1 each). To increase the lipid content even further, 12 h heat shock at 50℃ was applied and this enhanced the biomass and lipid productivity up to 4 and 17% respectively (7.3 and 2.64 g l-1d-1, each) relative to the optimized conditions above, and the values were 17 and 14% higher than ordinary lipid-accumulating N-limitation (6.2 and 2.31 g l-1d-1). On this basis, heat shock was successfully adopted in novel Chlorella sp. HS2 cultivation as a lipid inducer for the first time. Considering its fast and cost-effective characteristics, heat shock will enhance the overall microalgal biofuel production process.

Keywords

References

  1. Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML. 2010. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol. 101: 1406-1413. https://doi.org/10.1016/j.biortech.2009.09.038
  2. Richardson JW, Johnson MD, Outlaw JL. 2012. Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Res. 1: 93-100. https://doi.org/10.1016/j.algal.2012.04.001
  3. Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 45: 11-36. https://doi.org/10.1016/j.watres.2010.08.037
  4. Yan D, Lu Y, Chen YF, Wu QY. 2011. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour. Technol. 102: 6487-6493. https://doi.org/10.1016/j.biortech.2011.03.036
  5. Park WK, Moon M, Shin SE, Cho JM, Suh WI, Chang YK, et al. 2018. Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Res. 29: 71-79. https://doi.org/10.1016/j.algal.2017.11.017
  6. Morales-Sanchez D, Martinez-Rodriguez OA, Martinez A. 2016. Heterotrophic cultivation of microalgae: Production of metabolites of commercial interest. J. Chem. Technol. Biotechnol. 92: 925-936. https://doi.org/10.1002/jctb.5115
  7. Jeon JY, Kwon JS, Kang ST, Kim BR, Jung YC, Han JG, et al. 2014. Optimization of culture media for large-scale lutein production by heterotrophic Chlorella vulgaris. Biotechnol. Progr. 30: 736-743. https://doi.org/10.1002/btpr.1889
  8. Kim M, Lee B, Kim HS, Nam K, Moon M, Oh H-M, et al. 2019. Increased biomass and lipid production of Ettlia sp. YC001 by optimized C and N sources in heterotrophic culture. Sci. Rep. 9: 6830. https://doi.org/10.1038/s41598-019-43366-5
  9. Binnal P, Babu PN. 2017. Statistical optimization of parameters affecting lipid productivity of microalga Chlorella protothecoides cultivated in photobioreactor under nitrogen starvation. S. Afr. J. Chem. Eng. 23: 26-37. https://doi.org/10.1016/j.sajce.2017.01.001
  10. Mohammad Mirzaie MA, Kalbasi M, Mousavi SM, Ghobadian B. 2016. Statistical evaluation and modeling of cheap substrate-based cultivation medium of Chlorella vulgaris to enhance microalgae lipid as new potential feedstock for biolubricant. Prep. Biochem. Biotech. 46: 368-375. https://doi.org/10.1080/10826068.2015.1031398
  11. Wang T, Tian X, Liu T, Wang Z, Guan W, Guo M, et al. 2017. A two-stage fed-batch heterotrophic culture of Chlorella protothecoides that combined nitrogen depletion with hyperosmotic stress strategy enhanced lipid yield and productivity. Process Biochem. 60: 74-83. https://doi.org/10.1016/j.procbio.2017.05.027
  12. Li X, Xu H, Wu Q. 2007. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol. Bioeng. 98: 764-771. https://doi.org/10.1002/bit.21489
  13. Xu H, Miao X, Wu Q. 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 126: 499-507. https://doi.org/10.1016/j.jbiotec.2006.05.002
  14. Garcia-Ochoa F, Gomez E. 2009. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol. Adv. 27: 153-176. https://doi.org/10.1016/j.biotechadv.2008.10.006
  15. Karimi A, Golbabaei F, Mehrnia MR, Neghab M, Mohammad K, Nikpey A, et al. 2013. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes. Iran J. Environ. Healt. 10: 6 https://doi.org/10.1186/1735-2746-10-6
  16. Yun J-H, Cho D-H, Heo J, Lee YJ, Lee B, Chang YK, et al. 2019. Evaluation of the potential of Chlorella sp. HS2, an algal isolate from a tidal rock pool, as an industrial algal crop under a wide range of abiotic conditions. J. Appl. Phycol. 31: 2245-2258. https://doi.org/10.1007/s10811-019-1751-z
  17. Griffiths MJ, van Hille RP, Harrison STL. 2014. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Appl. Microbiol. Biotechnol. 98: 2345-2356. https://doi.org/10.1007/s00253-013-5442-4
  18. Nayak M, Suh WI, Lee B, Chang YK. 2018. Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide. Energy Convers. Manag. 156: 45-52. https://doi.org/10.1016/j.enconman.2017.11.002
  19. Paliwal C, Mitra M, Bhayani K, Bharadwaj SVV, Ghosh T, Dubey S, et al. 2017. Abiotic stresses as tools for metabolites in microalgae. Bioresour. Technol. 244: 1216-1226. https://doi.org/10.1016/j.biortech.2017.05.058
  20. Kumar V, Muthuraj M, Palabhanvi B, Ghoshal AK, Das D. 2014. High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a singlestage fed-batch mode under mixotrophic condition. Bioresour. Technol. 170: 115-124. https://doi.org/10.1016/j.biortech.2014.07.066
  21. Wang CC, Lan CQ. 2018. Effects of shear stress on microalgae - A review. Biotechnol. Adv. 36: 986-1002. https://doi.org/10.1016/j.biotechadv.2018.03.001
  22. Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226: 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
  23. Sung MG, Lee B, Kim CW, Nam K, Chang YK. 2017. Enhancement of lipid productivity by adopting multi-stage continuous cultivation strategy in Nannochloropsis gaditana. Bioresour. Technol. 229: 20-25. https://doi.org/10.1016/j.biortech.2016.12.100
  24. Kwak M, Roh S, Yang A, Lee H, Chang YK. 2019. High shear-assisted solvent extraction of lipid from wet biomass of Aurantiochytrium sp. KRS101. Sep. Purif. Technol. 227: 115666. https://doi.org/10.1016/j.seppur.2019.06.004
  25. Lim HC, Shin HS. 2013. Fed-batch Cultures, pp. 54-55. 1st Ed. Cambridge University Press, New York.
  26. Feng X, Walker TH, Bridges WC, Thornton C, Gopalakrishnan K. 2014. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Bioresour. Technol. 166: 17-23. https://doi.org/10.1016/j.biortech.2014.03.120
  27. Guldhe A, Ansari FA, Singh P, Bux F. 2017. Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecol. Eng. 99: 47-53. https://doi.org/10.1016/j.ecoleng.2016.11.013
  28. Maroneze MM, Barin JS, de Menezes CR, Queiroz MI, Zepka LQ, Jacob-Lopes E. 2014. Treatment of cattleslaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors. Sci. Agric. 71: 521-524. https://doi.org/10.1590/0103-9016-2014-0092
  29. Okabe M, Kuwajima T, Satoh M, Kimura K, Okamura K, Okamoto R. 1992. Preferential and high-yield production of a cephamycin C by dissolved oxygen controlled fermentation. J. Ferment. Bioeng. 73: 292-296. https://doi.org/10.1016/0922-338X(92)90186-X
  30. Garcia-Ochoa F, Gomez E, Santos VE, Merchuk JC. 2010. Oxygen uptake rate in microbial processes: an overview. Biochem. Eng. J. 49: 289-307. https://doi.org/10.1016/j.bej.2010.01.011
  31. Vrede T, Dobberfuhl DR, Kooijman SALM, Elser JJ. 2004. Fundamental connections among organism C : N : P stoichiometry, macromolecular composition, and growth. Ecology 85: 1217-1229. https://doi.org/10.1890/02-0249
  32. Shen XF, Chu FF, Lam PKS, Zeng RJ. 2015. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation. Water Res. 81: 294-300. https://doi.org/10.1016/j.watres.2015.06.003
  33. Chen Y-H, Walker TH. 2012. Fed-batch fermentation and supercritical fluid extraction of heterotrophic microalgal Chlorella protothecoides lipids. Bioresour. Technol. 114: 512-517. https://doi.org/10.1016/j.biortech.2012.03.026
  34. Shi XM, Jiang Y, Chen F. 2002. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol. Progr. 18: 723-727. https://doi.org/10.1021/bp0101987
  35. Eixler S, Karsten U, Selig U. 2006. Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45: 53-60. https://doi.org/10.2216/04-79.1
  36. G. Belotti MB, B. Caprariis, P. Filippis, M. Scarsella. 2013. Effect of nitrogen and phosphorus starvations on Chlorella vulgaris lipids productivity and quality under different trophic regimens for biodiesel production. Am. J. Plant Sci. 4: 44-51. https://doi.org/10.4236/ajps.2013.412A2006
  37. Chu FF, Chu PN, Shen XF, Lam PK, Zeng RJ. 2014. Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresour. Technol. 152: 241-246. https://doi.org/10.1016/j.biortech.2013.11.013
  38. Bartholomew W, Karow E, Sfat M, Wilhelm R. 1950. Oxygen transfer and agitation in submerged fermentations. Effect of air flow and agitation rates upon fermentation of Penicillium chrysogenum and Streptomyces griseus. Ind. Eng. Chem. 42: 1810-1815. https://doi.org/10.1021/ie50489a033
  39. Oldshue JY. 1966. Fermentation mixing scale-up techniques. Biotechnol. Bioeng. 8: 3-24. https://doi.org/10.1002/bit.260080103
  40. Bauer S, Shiloach J. 1974. Maximal exponential growth rate and yield of E. coli obtainable in a bench-scale fermentor. Biotechnol. Bioeng. 16: 933-941. https://doi.org/10.1002/bit.260160707
  41. D'Alessandro EB, Antoniosi Filho NR. 2016. Concepts and studies on lipid and pigments of microalgae: A review. Renew. Sust. Energ. Rev. 58: 832-841. https://doi.org/10.1016/j.rser.2015.12.162
  42. Li Y, Yuan Z, Mu J, Chen D, Feng B. 2013. Proteomic analysis of lipid accumulation in chlorella protothecoides cells by heterotrophic N deprivation coupling cultivation. Energ. Fuel. 27: 4031-4040. https://doi.org/10.1021/ef4000177
  43. Teoh M-L, Phang S-M, Chu W-L. 2013. Response of Antarctic, temperate, and tropical microalgae to temperature stress. J. Appl. Phycol. 25: 285-297. https://doi.org/10.1007/s10811-012-9863-8