References
- Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML. 2010. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour. Technol. 101: 1406-1413. https://doi.org/10.1016/j.biortech.2009.09.038
- Richardson JW, Johnson MD, Outlaw JL. 2012. Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Res. 1: 93-100. https://doi.org/10.1016/j.algal.2012.04.001
- Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 45: 11-36. https://doi.org/10.1016/j.watres.2010.08.037
- Yan D, Lu Y, Chen YF, Wu QY. 2011. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour. Technol. 102: 6487-6493. https://doi.org/10.1016/j.biortech.2011.03.036
- Park WK, Moon M, Shin SE, Cho JM, Suh WI, Chang YK, et al. 2018. Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Res. 29: 71-79. https://doi.org/10.1016/j.algal.2017.11.017
- Morales-Sanchez D, Martinez-Rodriguez OA, Martinez A. 2016. Heterotrophic cultivation of microalgae: Production of metabolites of commercial interest. J. Chem. Technol. Biotechnol. 92: 925-936. https://doi.org/10.1002/jctb.5115
- Jeon JY, Kwon JS, Kang ST, Kim BR, Jung YC, Han JG, et al. 2014. Optimization of culture media for large-scale lutein production by heterotrophic Chlorella vulgaris. Biotechnol. Progr. 30: 736-743. https://doi.org/10.1002/btpr.1889
- Kim M, Lee B, Kim HS, Nam K, Moon M, Oh H-M, et al. 2019. Increased biomass and lipid production of Ettlia sp. YC001 by optimized C and N sources in heterotrophic culture. Sci. Rep. 9: 6830. https://doi.org/10.1038/s41598-019-43366-5
- Binnal P, Babu PN. 2017. Statistical optimization of parameters affecting lipid productivity of microalga Chlorella protothecoides cultivated in photobioreactor under nitrogen starvation. S. Afr. J. Chem. Eng. 23: 26-37. https://doi.org/10.1016/j.sajce.2017.01.001
- Mohammad Mirzaie MA, Kalbasi M, Mousavi SM, Ghobadian B. 2016. Statistical evaluation and modeling of cheap substrate-based cultivation medium of Chlorella vulgaris to enhance microalgae lipid as new potential feedstock for biolubricant. Prep. Biochem. Biotech. 46: 368-375. https://doi.org/10.1080/10826068.2015.1031398
- Wang T, Tian X, Liu T, Wang Z, Guan W, Guo M, et al. 2017. A two-stage fed-batch heterotrophic culture of Chlorella protothecoides that combined nitrogen depletion with hyperosmotic stress strategy enhanced lipid yield and productivity. Process Biochem. 60: 74-83. https://doi.org/10.1016/j.procbio.2017.05.027
- Li X, Xu H, Wu Q. 2007. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol. Bioeng. 98: 764-771. https://doi.org/10.1002/bit.21489
- Xu H, Miao X, Wu Q. 2006. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 126: 499-507. https://doi.org/10.1016/j.jbiotec.2006.05.002
- Garcia-Ochoa F, Gomez E. 2009. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol. Adv. 27: 153-176. https://doi.org/10.1016/j.biotechadv.2008.10.006
- Karimi A, Golbabaei F, Mehrnia MR, Neghab M, Mohammad K, Nikpey A, et al. 2013. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes. Iran J. Environ. Healt. 10: 6 https://doi.org/10.1186/1735-2746-10-6
- Yun J-H, Cho D-H, Heo J, Lee YJ, Lee B, Chang YK, et al. 2019. Evaluation of the potential of Chlorella sp. HS2, an algal isolate from a tidal rock pool, as an industrial algal crop under a wide range of abiotic conditions. J. Appl. Phycol. 31: 2245-2258. https://doi.org/10.1007/s10811-019-1751-z
- Griffiths MJ, van Hille RP, Harrison STL. 2014. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Appl. Microbiol. Biotechnol. 98: 2345-2356. https://doi.org/10.1007/s00253-013-5442-4
- Nayak M, Suh WI, Lee B, Chang YK. 2018. Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide. Energy Convers. Manag. 156: 45-52. https://doi.org/10.1016/j.enconman.2017.11.002
- Paliwal C, Mitra M, Bhayani K, Bharadwaj SVV, Ghosh T, Dubey S, et al. 2017. Abiotic stresses as tools for metabolites in microalgae. Bioresour. Technol. 244: 1216-1226. https://doi.org/10.1016/j.biortech.2017.05.058
- Kumar V, Muthuraj M, Palabhanvi B, Ghoshal AK, Das D. 2014. High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a singlestage fed-batch mode under mixotrophic condition. Bioresour. Technol. 170: 115-124. https://doi.org/10.1016/j.biortech.2014.07.066
- Wang CC, Lan CQ. 2018. Effects of shear stress on microalgae - A review. Biotechnol. Adv. 36: 986-1002. https://doi.org/10.1016/j.biotechadv.2018.03.001
- Folch J, Lees M, Sloane Stanley GH. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226: 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
- Sung MG, Lee B, Kim CW, Nam K, Chang YK. 2017. Enhancement of lipid productivity by adopting multi-stage continuous cultivation strategy in Nannochloropsis gaditana. Bioresour. Technol. 229: 20-25. https://doi.org/10.1016/j.biortech.2016.12.100
- Kwak M, Roh S, Yang A, Lee H, Chang YK. 2019. High shear-assisted solvent extraction of lipid from wet biomass of Aurantiochytrium sp. KRS101. Sep. Purif. Technol. 227: 115666. https://doi.org/10.1016/j.seppur.2019.06.004
- Lim HC, Shin HS. 2013. Fed-batch Cultures, pp. 54-55. 1st Ed. Cambridge University Press, New York.
- Feng X, Walker TH, Bridges WC, Thornton C, Gopalakrishnan K. 2014. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Bioresour. Technol. 166: 17-23. https://doi.org/10.1016/j.biortech.2014.03.120
- Guldhe A, Ansari FA, Singh P, Bux F. 2017. Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecol. Eng. 99: 47-53. https://doi.org/10.1016/j.ecoleng.2016.11.013
- Maroneze MM, Barin JS, de Menezes CR, Queiroz MI, Zepka LQ, Jacob-Lopes E. 2014. Treatment of cattleslaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors. Sci. Agric. 71: 521-524. https://doi.org/10.1590/0103-9016-2014-0092
- Okabe M, Kuwajima T, Satoh M, Kimura K, Okamura K, Okamoto R. 1992. Preferential and high-yield production of a cephamycin C by dissolved oxygen controlled fermentation. J. Ferment. Bioeng. 73: 292-296. https://doi.org/10.1016/0922-338X(92)90186-X
- Garcia-Ochoa F, Gomez E, Santos VE, Merchuk JC. 2010. Oxygen uptake rate in microbial processes: an overview. Biochem. Eng. J. 49: 289-307. https://doi.org/10.1016/j.bej.2010.01.011
- Vrede T, Dobberfuhl DR, Kooijman SALM, Elser JJ. 2004. Fundamental connections among organism C : N : P stoichiometry, macromolecular composition, and growth. Ecology 85: 1217-1229. https://doi.org/10.1890/02-0249
- Shen XF, Chu FF, Lam PKS, Zeng RJ. 2015. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation. Water Res. 81: 294-300. https://doi.org/10.1016/j.watres.2015.06.003
- Chen Y-H, Walker TH. 2012. Fed-batch fermentation and supercritical fluid extraction of heterotrophic microalgal Chlorella protothecoides lipids. Bioresour. Technol. 114: 512-517. https://doi.org/10.1016/j.biortech.2012.03.026
- Shi XM, Jiang Y, Chen F. 2002. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol. Progr. 18: 723-727. https://doi.org/10.1021/bp0101987
- Eixler S, Karsten U, Selig U. 2006. Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia 45: 53-60. https://doi.org/10.2216/04-79.1
- G. Belotti MB, B. Caprariis, P. Filippis, M. Scarsella. 2013. Effect of nitrogen and phosphorus starvations on Chlorella vulgaris lipids productivity and quality under different trophic regimens for biodiesel production. Am. J. Plant Sci. 4: 44-51. https://doi.org/10.4236/ajps.2013.412A2006
- Chu FF, Chu PN, Shen XF, Lam PK, Zeng RJ. 2014. Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresour. Technol. 152: 241-246. https://doi.org/10.1016/j.biortech.2013.11.013
- Bartholomew W, Karow E, Sfat M, Wilhelm R. 1950. Oxygen transfer and agitation in submerged fermentations. Effect of air flow and agitation rates upon fermentation of Penicillium chrysogenum and Streptomyces griseus. Ind. Eng. Chem. 42: 1810-1815. https://doi.org/10.1021/ie50489a033
- Oldshue JY. 1966. Fermentation mixing scale-up techniques. Biotechnol. Bioeng. 8: 3-24. https://doi.org/10.1002/bit.260080103
- Bauer S, Shiloach J. 1974. Maximal exponential growth rate and yield of E. coli obtainable in a bench-scale fermentor. Biotechnol. Bioeng. 16: 933-941. https://doi.org/10.1002/bit.260160707
- D'Alessandro EB, Antoniosi Filho NR. 2016. Concepts and studies on lipid and pigments of microalgae: A review. Renew. Sust. Energ. Rev. 58: 832-841. https://doi.org/10.1016/j.rser.2015.12.162
- Li Y, Yuan Z, Mu J, Chen D, Feng B. 2013. Proteomic analysis of lipid accumulation in chlorella protothecoides cells by heterotrophic N deprivation coupling cultivation. Energ. Fuel. 27: 4031-4040. https://doi.org/10.1021/ef4000177
- Teoh M-L, Phang S-M, Chu W-L. 2013. Response of Antarctic, temperate, and tropical microalgae to temperature stress. J. Appl. Phycol. 25: 285-297. https://doi.org/10.1007/s10811-012-9863-8