• 제목/요약/키워드: Batch polymerization reactor

검색결과 15건 처리시간 0.024초

비선형 예측제어 알고리즘을 이용한 회분식 중합 반응기의 온도제어 (Temperature control of a batch polymerization reactor using nonlinear predictive control algorithm)

  • 나상섭;노형준;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1000-1003
    • /
    • 1996
  • Nonlinear unified predictive control(UPC) algorithm was applied to the temperature control of a batch polymerization reactor for polymethylmethacrylate(PMMA). Before the polymerization reaction is initiated, the parameters of the process model are determined by the recursive least squares(RLS) method. During the reaction, nonlinearities due to generation of heat of reaction and variation of heat transfer coefficients are predicted through the nonlinear model developed. These nonlinearities are added to the process output from the linear process model. And then, the predicted process output is used to calculate the control output sequence. The performance of nonlinear control algorithm was verified by simulation and compared with that of the linear unified predictive control algorithm. In the experiment of a batch PMMA polymerization, nonlinear unified predictive control was implemented to regulate the temperature of the reactor, and the validity of the nonlinear model was verified through the experimental results. The performance of the nonlinear controller turned out to be superior to that of the linear controller for tracking abrupt changes in setpoint.

  • PDF

Temperature control of a batch PMMA polymerization reactor using adaptive predictive control algorithm

  • Huh, Yun-Jun;Ahn, Sung-Mo;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.51-55
    • /
    • 1995
  • An adaptive unified predictive control (UPC) algorithm is applied to a batch polymerization reactor for poly(methyl methancrylate) (PMMA) and the effects of controller parameters are investigated. Computational studies are performed for a batch polymerization system model developed in this study. A transfer function in parametric form is estimated by recursive least squares (RLS) method, and the UPC algorithm is implemented to control the reactor temperature on the basis of this transfer function. The adaptive unified predictive controller shows a better performance than the PID controller for tracking set point changes, especially in the latter part of reaction course when gel effect becomes significant. Various performance can be acquired by selecting adequate values for parameters of the adaptive unified predictive controller; in other words, the optimal set of parameters exists for a given set of reaction conditions and control objective.

  • PDF

온라인 2단계 방법을 이용한 회분식 PS 중합반응기의 온도제어 (Temperature control of a batch PS polymerization reactor using on-line two-step method)

  • 이병모;노형준;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.305-308
    • /
    • 1997
  • The on-line calculation method is developed to obtain the temperature trajectory that brings the reactants to the desired state in batch styrene polymerization reactor. The temperature trajectory is obtained by applying the moments of the polymer concentration to the 2-step calculation method. The computer simulation is also carried out to verify the superiority of the on-line method to the off-line one. When a temperature disturbance of constant size is introduced, the off-line results shows considerable deviation from the target degree of polymerization. The on-line strategy set up a new trajectory to reach the desired state by using the current state of the reactor. Therefore, the on-line strategy deals with the changes of the system more adequately than the off-line strategy.

  • PDF

Fuzzy Learning Control: Application to an Industrial Polymerization Reactor

  • Seokho-Yi;Park, Sunwon-
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1106-1108
    • /
    • 1993
  • This paper deals with an industrial application of a fuzzy feedback combined learning control to an industrial batch free radical polymerization reactor. As a result, the plant has reduced the batch reaction time by 50 minute and stabilized both by 40 percent reduction of the standard deviations of product qualities, such as the total solid content and the graft gum, and by 45 percent reduction of the standard deviation of the batch reaction end time.

  • PDF

Physical property control for a batch polymerization reactor

  • Kim, In-Sun;Ahn, Sung-Mo;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.263-266
    • /
    • 1996
  • A method to determine an optimal temperature trajectory that guarantees polymer products having controlled molecular weight distribution and desired values of molecular weight is presented. The coordinate transformation method and the optimal control theory are applied to a batch PMMA polymerization system to calculate the optimal temperature trajectory. Coordinate transformation method converts the original fixed-end-point, free-end-time problem to a free-end-point, fixed-end-time problem. The idea is that by making the reactor temperature track the optimal temperature trajectory one may be able to produce polymer products having the prespecified physical property in a minimum time. The on-line control experiments with the PID control algorithm have been conducted to establish the validity of the scheme proposed in this study. The experimental results show that prespecified polymer product could be obtained with tracking the calculated optimal temperature trajectory.

  • PDF

회분식 중합 반응기에서의 분자량 분포제어 전략 (Strategy for molecular weight distribution control in a batch polymerization reactor system)

  • 김인선;유기윤;이현구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.766-771
    • /
    • 1993
  • A mathematical model is developed to represent the batch reactor for free radical polymerization of PMMA The model is validated by comparing the simulation result with the experimental data. A computational scheme is proposed to determine the trajectory of the reactor temperature that will produce polymer product having the desired molecular weight distribution. For this instantaneous number average chain length and polydispersity are introduced to calculate the reactor temperature. The former is assumed to be a second order polynomial of the sum of the living and dead polymer concentrations. Various reactor temperature, trajectories are observed depending on the reactor conditions and prescribed molecular weight distributions. Fuzzy and PID control algorithms are applied to trace the reactor temperature trajectory. While the PID control gives rise to an overshoot when the trajectory changes its direction, the fuzzy controller yields a more satisfactory performance because it secures information on the trajectory pattern.

  • PDF

Optimal Temperature Tracking Control of a Polymerization Batch Reactor by Adaptive Input-Output Linearization

  • Noh, Kap-Kyun;Dongil Shin;Yoon, En-Sup;Rhee, Hyun-Ku
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.62-74
    • /
    • 2002
  • The tracking of a reference temperature trajectory in a polymerization batch reactor is a common problem and has critical importance because the quality control of a batch reactor is usually achieved by implementing the trajectory precisely. In this study, only energy balances around a reactor are considered as a design model for control synthesis, and material balances describing concentration variations of involved components are treated as unknown disturbances, of which the effects appear as time-varying parameters in the design model. For the synthesis of a tracking controller, a method combining the input-output linearization of a time-variant system with the parameter estimation is proposed. The parameter estimation method provides parameter estimates such that the estimated outputs asymptotically follow the measured outputs in a specified way. Since other unknown external disturbances or uncertainties can be lumped into existing parameters or considered as another separate parameters, the method is useful in practices exposed to diverse uncertainties and disturbances, and the designed controller becomes robust. And the design procedure and setting of tuning parameters are simple and clear due to the resulted linear design equations. The performances and the effectiveness of the proposed method are demonstrated via simulation studies.

산업용 회분식 반응기에서의 반응열 추정 (Reaction heat estimation of industrial batch reactors)

  • 방성호;이대욱;이광순;이석호;손종상;윤상철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.595-600
    • /
    • 1993
  • The heat of reaction has been estimated from heat balance relationships around the reactor. The heat balance equations were formulated with the assumptions that the reactor temperature is uniformly distributed and the jacket temperatures are axially distributed. We have obtained the temperature distribution of jacket contents by FDM. And then, we have rearranged the heat balance equations so that the heat of reaction can be estimated from the finite number of temperature measurements, i.e., temperatures of the reactor contents, at the jacket inlet and outlet, respectively. The proposed method for reaction heat estimation on were applied to industrial batch reactors ; one is ABS polymerization reactor and the other is SAN polymerization reactor. We have also examined the variation of overall heat transfer coefficients for the reactors during reaction.

  • PDF

배추 뿌리의 Peroxidase를 이용한 Phenol의 제거 (Phenol Removal by Peroxidases Extracted from Chinese Cabbage Root)

  • 김영미;한달호
    • KSBB Journal
    • /
    • 제10권3호
    • /
    • pp.335-342
    • /
    • 1995
  • 농산 폐기물인 배추 뿌리에 다량으로 존재하는 peroxidase를 산업적으로 이용하기 위하여 배추 뿌 라를 JUicer로 대량 추출하여 객상효소 부분과 고형 물 부분을 얻었다. Peroxidase는 액상 부분에 약 6 66%, 고형물 부분에 34%가 분포되어 있으므로 두 부분을 모두 이용하여 phenol성 폐수의 효소적 처리를 검토하였다. Batch stirred reactor에서 액상효소(1,800 unit/$\ell$) 를 이용하여 150ppm의 phenol 용액을 처리한 결과 3시간 후에 96% 의 phenol을 중 합시켜 침전으로 제거할 수 있었다. 한편 pulp를 이용한 air lift reactor(600 unit/$\ell$) 에서는 120ppm의 초기 phenol 농도로부터 5ppm까지 제거할 수 있 다. Batch stirred reactor에 비하여 air lift reactor에 첨가된 효소의 양이 1/3임에도 불구하고 거의 비숫한 phenol 제거 효율을 냐타내었다.

  • PDF

비닐아세테이트 중합공정에서 폭주반응 위험성 평가 (Hazard Evaluation of Runaway Reaction in the Vinyl Acetate Polymerization Process)

  • 이근원;한인수
    • 한국안전학회지
    • /
    • 제26권5호
    • /
    • pp.46-53
    • /
    • 2011
  • The risk assessment of thermal behavior and runaway reaction cased by an exothermic batch process in manufacture of the vinyl acetate resin are described in the present paper. The aim of the study was to evaluate the risk of runaway reaction with operating parameters such as a reaction inhibitor, reaction temperature and a mount of methanol charged in the vinyl acetate polymerization process. The experiments were performed by a sort of calorimetry with the Multimax reactor system as a screening tool to investigate runaway reaction. From the experimental results, it was found that we could occur the auto acceleration for reaction of raw materials with operating parameters over $65^{\circ}C$ of reaction temperature in the vinyl acetate polymerization process.