• 제목/요약/키워드: Basis function methodology

검색결과 108건 처리시간 0.025초

A New Methodology for Software Module Characterization

  • Shin, Miyoung;Nam, Yunseok
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.434-437
    • /
    • 1999
  • The primary aim of this paper is to introduce and illustrate a radial basis function (RBF) modeling approach fur software module characterization, as an alternative to current techniques. The RBF model has been known to provide a rich analytical framework fur a broad class of so-called pattern recognition problems. Especially, it features both nonlinearity and linearity which in general are treated separately by its learning algorithm, leading to offer conceptual and computational advantages. Furthermore, our new modeling methodology fer determining model parameters has a sound mathematical basis and showed very interesting results in terms of model consistency as well as performance.

  • PDF

OOIDEF0 기반의 정보시스템 분석 및 설계 기법: 조선 PDM 시스템 적용사례 (An Information System Analysis and Design Methodology Based on Object-Oriented IDEF0: A Case Study for the PDM System of ship Production)

  • 김재균;장길상
    • 산업공학
    • /
    • 제16권1호
    • /
    • pp.70-84
    • /
    • 2003
  • Recently, object-oriented techniques have been used more and more for developments of an information system. But, established object-oriented methodologies are hard to express a business process of various abstract degrees in the analysis level and independent components of the system. They have difficulties in developing a large-scale information system of manufacturing industry such as PDM and CIM. This paper proposes an information system development methodology that imports the object-oriented IDEF0 (OOIDEF0) function model in analysis level. This methodology is made up of requirements gathering, system analysis, system design, and implementation. In requirements gathering level, organization diagram and interview technique are used for input data of OOIDEF0 function model. The OOIDEF0 function model, the interface model and function descriptions are made out in analysis level. Information objects and implementation objects are designed on the basis of the OOIDEF0 function model in design level. The database is built and programming is accomplished in implementation level. In order to prove the consistency and efficiency of the proposed methodology, the PDM system for ship production is modeled and prototyped.

Radial Basis Function Neural Networks (RBFNN) and p-q Power Theory Based Harmonic Identification in Converter Waveforms

  • Almaita, Eyad K.;Asumadu, Johnson A.
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.922-930
    • /
    • 2011
  • In this paper, two radial basis function neural networks (RBFNNs) are used to dynamically identify harmonics content in converter waveforms based on the p-q (real power-imaginary power) theory. The converter waveforms are analyzed and the types of harmonic content are identified over a wide operating range. Constant power and sinusoidal current compensation strategies are investigated in this paper. The RBFNN filtering training algorithm is based on a systematic and computationally efficient training method called the hybrid learning method. In this new methodology, the RBFNN is combined with the p-q theory to extract the harmonics content in converter waveforms. The small size and the robustness of the resulting network models reflect the effectiveness of the algorithm. The analysis is verified using MATLAB simulations.

커크우드-버프 용액 이론 (Kirkwood-Buff Solution Theory)

  • 임경희
    • 한국응용과학기술학회지
    • /
    • 제27권4호
    • /
    • pp.452-460
    • /
    • 2010
  • Any theory of liquid should account for interactions between molecules, since molecules in a liquid are close to each other. For this matter statistical-mechanical methodology has been used and various models have been proposed on the basis of this methodology. Among them Kirkwood-Buff solution theory has attracted a lot of interest, because it is regarded as being the most powerful. In this article Kirkwood-Buff solution theory is revisited and its key equations are derived. On the way to these equations, the concepts of pair correlation function, radial distribution function, Kirkwood-Buff integration are explained and implemented. Since complexity of statical mechanics involved in this theory, the equations are applied to one-component systems and the results are compared to those obtained by classical thermodynamics. This may be a simple way for Kirkwood-Buff solution theory to be examined for its validity.

공간 탐색 최적화 알고리즘을 이용한 K-Means 클러스터링 기반 다항식 방사형 기저 함수 신경회로망: 설계 및 비교 해석 (K-Means-Based Polynomial-Radial Basis Function Neural Network Using Space Search Algorithm: Design and Comparative Studies)

  • 김욱동;오성권
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.731-738
    • /
    • 2011
  • In this paper, we introduce an advanced architecture of K-Means clustering-based polynomial Radial Basis Function Neural Networks (p-RBFNNs) designed with the aid of SSOA (Space Search Optimization Algorithm) and develop a comprehensive design methodology supporting their construction. In order to design the optimized p-RBFNNs, a center value of each receptive field is determined by running the K-Means clustering algorithm and then the center value and the width of the corresponding receptive field are optimized through SSOA. The connections (weights) of the proposed p-RBFNNs are of functional character and are realized by considering three types of polynomials. In addition, a WLSE (Weighted Least Square Estimation) is used to estimate the coefficients of polynomials (serving as functional connections of the network) of each node from output node. Therefore, a local learning capability and an interpretability of the proposed model are improved. The proposed model is illustrated with the use of nonlinear function, NOx called Machine Learning dataset. A comparative analysis reveals that the proposed model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

Context-based 클러스터링에 의한 Granular-based RBF NN의 설계 (The Design of Granular-based Radial Basis Function Neural Network by Context-based Clustering)

  • 박호성;오성권
    • 전기학회논문지
    • /
    • 제58권6호
    • /
    • pp.1230-1237
    • /
    • 2009
  • In this paper, we develop a design methodology of Granular-based Radial Basis Function Neural Networks(GRBFNN) by context-based clustering. In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The output space is granulated making use of the K-Means clustering while the input space is clustered with the aid of a so-called context-based fuzzy clustering. The number of information granules produced for each context is adjusted so that we satisfy a certain reconstructability criterion that helps us minimize an error between the original data and the ones resulting from their reconstruction involving prototypes of the clusters and the corresponding membership values. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the values of the context and the prototypes in the input space. The other parameters of these local functions are subject to further parametric optimization. Numeric examples involve some low dimensional synthetic data and selected data coming from the Machine Learning repository.

리니어형 초전도 전원장치 모델링을 위한 입자화 기반 Neurocomputing 네트워크 설계 (Design of Granular-based Neurocomputing Networks for Modeling of Linear-Type Superconducting Power Supply)

  • 박호성;정윤도;김현기;오성권
    • 전기학회논문지
    • /
    • 제59권7호
    • /
    • pp.1320-1326
    • /
    • 2010
  • In this paper, we develop a design methodology of granular-based neurocomputing networks realized with the aid of the clustering techniques. The objective of this paper is modeling and evaluation of approximation and generalization capability of the Linear-Type Superconducting Power Supply (LTSPS). In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The underlying design tool guiding the development of the granular-based neurocomputing networks revolves around the Fuzzy C-Means (FCM) clustering method and the Radial Basis Function (RBF) neural network. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the membership values of the input space with the aid of FCM clustering. To modeling and evaluation of performance of the linear-type superconducting power supply using the proposed network, we describe a detailed characteristic of the proposed model using a well-known NASA software project data.

기계류 부품 신뢰성 모델링에 관한 연구 (A Study on the Development of Reliability Modeling in Machine Parts)

  • 하성도;이두영
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2000년도 춘계학술대회 발표논문집
    • /
    • pp.223-230
    • /
    • 2000
  • This work aims to develop modeling methodology of machine part reliability. The reliability model is to be used for predicting and improving reliability in planning and design processes of products. In order to develop the reliability model of machine parts, the functions and interactions of sub-units of machine parts are analyzed first and function network is constructed. Using the function network, function block diagram is developed, which can be the basis for deriving reliability block diagram. Modeling of machine part reliability has not been widely studied since the reliability modeling of machine parts requires understanding of the functions and failures of their components in several viewpoints. This work tries to find general methodology of reliability modeling and proposes a framework for reliability improvement during machine part development.

  • PDF

하수처리 공정을 위한 Type-2 RBF Neural Networks 모델링 설계 (Design of Type-2 Radial Basis Function Neural Networks Modeling for Sewage Treatment Process)

  • 이승철;권학주;오성권
    • 전기학회논문지
    • /
    • 제64권10호
    • /
    • pp.1469-1478
    • /
    • 2015
  • In this paper, The methodology of Type-2 fuzzy set-based Radial Basis Function Neural Network(T2RBFNN) is proposed for Sewage Treatment Process and the simulator is developed for application to the real-world sewage treatment plant by using the proposed model. The proposed model has robust characteristic than conventional RBFNN. architecture of network consist of three layers such as input layer, hidden layer and output layer of RBFNN, and Type-2 fuzzy set is applied to receptive field in contrast with conventional radial basis function. In addition, the connection weights of the proposed model are defined as linear polynomial function, and then are learned through Back-Propagation(BP). Type reduction is carried out by using Karnik and Mendel(KM) algorithm between hidden layer and output layer. Sewage treatment data obtained from real-world sewage treatment plant is employed to evaluate performance of the proposed model, and their results are analyzed as well as compared with those of conventional RBFNN.

증분형 K-means 클러스터링 기반 방사형 기저함수 신경회로망 모델 설계 (Design of Incremental K-means Clustering-based Radial Basis Function Neural Networks Model)

  • 박상범;이승철;오성권
    • 전기학회논문지
    • /
    • 제66권5호
    • /
    • pp.833-842
    • /
    • 2017
  • In this study, the design methodology of radial basis function neural networks based on incremental K-means clustering is introduced for learning and processing the big data. If there is a lot of dataset to be trained, general clustering may not learn dataset due to the lack of memory capacity. However, the on-line processing of big data could be effectively realized through the parameters operation of recursive least square estimation as well as the sequential operation of incremental clustering algorithm. Radial basis function neural networks consist of condition part, conclusion part and aggregation part. In the condition part, incremental K-means clustering algorithms is used tweights of the conclusion part are given as linear function and parameters are calculated using recursive least squareo get the center points of data and find the fitness using gaussian function as the activation function. Connection s estimation. In the aggregation part, a final output is obtained by center of gravity method. Using machine learning data, performance index are shown and compared with other models. Also, the performance of the incremental K-means clustering based-RBFNNs is carried out by using PSO. This study demonstrates that the proposed model shows the superiority of algorithmic design from the viewpoint of on-line processing for big data.