• Title/Summary/Keyword: Basin model

Search Result 1,706, Processing Time 0.027 seconds

Retrieval of Key Hydrological Parameters in the Yellow River Basin Using Remote Sensing Technique

  • Dong, Jiang;Jianhua, Wang;Xiaohuan, Yang;Naibin, Wang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.721-727
    • /
    • 2002
  • Precipitation evapotranspiration and runoff are three key parameters of regional water balance. Problems exist in the traditional methods for calculating such factors , such as explaining of the geographic rationality of spatial interpolating methods and lacking of enough observation stations in many important area for bad natural conditions. With the development of modern spatial info-techniques, new efficient shifts arose for traditional studies. Guided by theories on energy flow and materials exchange within Soil-Atmosphere-Plant Continuant (SPAC), retrieval models of key hydrological parameters were established in the Yellow River basin using CMS-5 and FengYun-2 meteorological satellite data. Precipitation and evapotranspiration were then estimated: (1) Estimating tile amount of solar energy that is absorbed by the ground with surface reflectivity, which is measured in the visible wavelength band (VIS): (2) Assessing the partitioning of the absorbed energy between sensible and latent heat with the surface temperature, which was measured in the thermal infrared band (TIR), the latent heat representing the evapotranspiration of water; (3) Clouds are identified and cloud top levels are classified using both VIS and TIR data. Hereafter precipitation will be calculated pixel by pixel with retrieval model. Daily results are first obtained, which are then processed to decade, monthly and yearly products. Precipitation model has been has been and tested with ground truth data; meanwhile, the evapotranspiration result has been verified with Large Aperture Scintillometry (LAS) presented by Wageningen University of the Netherlands. Further studies may concentrate on the application of models, i.e., establish a hydrological model of the Yellow river basin to make the accurate estimation of river volume and even monitor the whole hydrological progress.

  • PDF

Development of a GIS-Based Basin Water Balance Analysis Model (GIS 기반의 유역물수지 분석모형 개발)

  • Hwang, Eui-Ho;Kim, Kye-Hyun;Park, Jin-Hyeog;Lee, Geun-Sang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.34-45
    • /
    • 2004
  • Existing Semangeum's water balance analysis simplifies whole basin to single basin and achieved volume of effluence that produce by Kajiyama way to foundation. But Semangeum is complicated and various rice-wine strainer supply system. And there is difficulty to apply as elastic when water balance element is changed at free point. Divided to unit possession station for suitable water balance analysis model application to Semangeum in this study. And developed basin water balance model of GIS base that can do details analysis is bite about development and transfer of an appropriation in the budget of basin water resources. Achieved study including abstraction and concept design that use UML (unified modeling language) diagram for details analysis, stream network composition for rice-wine strainer supply system application, preprocessing of GIS base and postprocessing module development, model revision and verification etc. Support of this water balance analysis model is available to establish efficient water resources administration plan through outward flow process analysis of water resources. And support is considered to be possible in more convenient and, reasonable water resources administration way establishment by minimizing manual processing in systematic water resources government official to user and support diversified analysis system.

  • PDF

A Study on the River Water Quality Management Model using Genetic Algorithm (유전알고리즘을 이용한 하천수질관리모형에 관한 연구)

  • Cho, Jae-Heon;Sung, Ki-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.453-460
    • /
    • 2004
  • The objective of this research is to develop the water quality management model to achieve the water quality goal and the minimization of the waste load abatement cost. Most of existing water quality management model can calculate BOD and DO. In addition to those variables, N and P are included in the management model of this study. With a genetic algorithm, calculation results from the mathematical water quality model can be used directly in this management model. Developed management model using genetic algorithm was applicated for the Youngsan River basin. To verify the management model, water quality and pollution source of the Youngsan River had been investigated. Treatment types and optimum treatment costs of the existing and planned WWTPs in the baisn were calculated from the model. The results of genetic algorithm indicate that Kwangju and Naju WWTP have to do the advanced treatment to achieve the water quality goal about BOD, DO and TP. Total annual treatment cost including the upgrade cost of existing WWTPs in the Youngsan River basin was about 50.3 billion Won.

Development and Application of Diffusion Wave-based Distributed Runoff Model (확산파에 기초한 분포형 유출모형의 개발 및 적용)

  • Lee, Min-Ho;Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.553-563
    • /
    • 2011
  • According to the improvement of computer's performance, the development of Geographic Information System (GIS), and the activation of offering information, a distributed model for analyzing runoff has been studied a lot in recently years. The distribution model is a theoretical and physical model computing runoff as making target basin subdivided parted. In the distributed model developed by this study, the volume of runoff at the surface flow is calculated on the basis of the parameter determined by landcover data and a two-dimensional diffusion wave equation. Most of existing runoff models compute velocity and discharge of flow by applying Manning-Strickler's mean velocity equation and Manning's roughness coefficient. Manning's roughness coefficient is not matched with dimension and ambiguous at computation; Nevertheless, it is widely used in because of its convenience for use. In order to improve those problems, this study developed the runoff model by applying not only Manning-Strickler's equation but also Chezy's mean velocity equation. Furthermore, this study introduced a power law of exponential friction factor expressed by the function of roughness height. The distributed model developed in this study is applied to 6 events of fan-shape basin, oblong shape test basin and Anseongcheon basin as real field conditions. As a result the model is found to be excellent in comparison with the exiting runoff models using for practical engineering application.

Application of recurrent neural network for inflow prediction into multi-purpose dam basin (다목적댐 유입량 예측을 위한 Recurrent Neural Network 모형의 적용 및 평가)

  • Park, Myung Ky;Yoon, Yung Suk;Lee, Hyun Ho;Kim, Ju Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1217-1227
    • /
    • 2018
  • This paper aims to evaluate the applicability of dam inflow prediction model using recurrent neural network theory. To achieve this goal, the Artificial Neural Network (ANN) model and the Elman Recurrent Neural Network(RNN) model were applied to hydro-meteorological data sets for the Soyanggang dam and the Chungju dam basin during dam operation period. For the model training, inflow, rainfall, temperature, sunshine duration, wind speed were used as input data and daily inflow of dam for 10 days were used for output data. The verification was carried out through dam inflow prediction between July, 2016 and June, 2018. The results showed that there was no significant difference in prediction performance between ANN model and the Elman RNN model in the Soyanggang dam basin but the prediction results of the Elman RNN model are comparatively superior to those of the ANN model in the Chungju dam basin. Consequently, the Elman RNN prediction performance is expected to be similar to or better than the ANN model. The prediction performance of Elman RNN was notable during the low dam inflow period. The performance of the multiple hidden layer structure of Elman RNN looks more effective in prediction than that of a single hidden layer structure.

An Offer of a Procedure Calculating Hourly Rainfall Excess by Use of Horton Infiltration Model in a Basin (유역 단위 Horton 침투모형을 적용한 시간단위 초과우량 산출 절차 제시)

  • Yoo, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.6
    • /
    • pp.533-541
    • /
    • 2010
  • It is basic for a flood prediction to calculate direct runoff from rainfall in a basin by the rainfall-runoff model. The direct runoff is calculated from rainfall excess or effective rainfall based on a rainfall-runoff model. The total rainfall minus rainfall loss equals rainfall excess with time. This loss can be treated equal to an infiltration loss under the assumption that the infiltration is a major one among the losses in the rainfall-runoff model. Practically obtaining the infiltration loss $\Phi$ index method, W index method or modified ones of these have been used. In this study it is assumed the loss of rainfall in a basin be a well-known Horton infiltration mechanism. And in case that the parameter set is given in the Horton infiltration model a procedure and assumption for calculating hourly infiltration loss and rainfall excess are offered and the results of its application are compared with those of $\Phi$ index method. By this study it is well shown the value of Horton infiltration function is exponentially decay with time as the Horton infiltration mechanism.

Development of Optimal Reservoir System Operation Model for Water Supply by Applying MIP Technique and Reappraisal of Water Supply Capability of Nakdong River Basin (MIP에 의한 댐군연계운영 최적화모형 개발과 개발 모형에 의한 낙동강수계 용수공급능력 재평가)

  • Choe, Yeong-Song;An, Gyeong-Su;Park, Myeong-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.447-459
    • /
    • 2000
  • Since the development of water resources is getting more difficult than ever before because of human-sociological condition, it would be necessary to develop a practically applicable technique for the management of water resources based on demand-side concept that could reduce unusable release for more effective and appropriate allocation of limited water resources. The objective of the study is to develop an optimal reservoir system operation model for water supply and energy augmentation by the combination of water budget analysis method in downstream area by MIP technique. The applicable study of the developed model was carried out and water supply capability of Nakdong river basin was re-evaluated by the developed model. The model has been found successful to guarantee appropriate water supply to the basin by means of deficit-supply management method and also turned out to be more practical tool for an optimal reservoir system operation model than other existing models.

  • PDF

Parameter Sensitivity Analysis of SWAT Model for Prediction of Pollutants Fate in Joman River Basin (조만강 유역의 오염물질 거동 예측을 위한 SWAT 모형의 매개변수 민감도 분석)

  • Kang, Deok-Ho;Kim, Tae-Won;Kim, Young-Do;Kwon, Jae-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.787-790
    • /
    • 2008
  • The SWAT(Soil and Water Assesment Tool) is a relatively large scale model for the complicated watershed or river basin. The model was developed to predict the effect of land management practices on water, sediment and agricultural chemical yields in large complex watershed with varying soils, land use and management conditions over long periods of time. Usually streams are divided into urban stream and natural stream in accordance with the development level. In case of urban stream, according to urbanization, as impermeable areas are increasing due to the change of land use condition and land cover condition, dry stream phenomenon at urban stream is rapidly progressed. In this study, long term run-off simulations in urban stream are performed by using SWAT model. Especially, the model is applied in small scale water shed, Joman River basin. The optimization by the sensitivity analysis is also performed for the model parameter estimations.

  • PDF

Modeling flood and inundation in the lower ha thanh river system, Binh dinh province, vietnam

  • Don, N. Cao;Hang, N.T. Minh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.195-195
    • /
    • 2016
  • Kon - Ha Thanh River basin is the largest and the most important river basin in Binh Dinh, a province in the South Central Coast of Vietnam. In the lower rivers, frequent flooding and inundation caused by heavy rains, upstream flood and or uncontrolled flood released from upstream reservoirs, are very serious, causing damage to agriculture, socio-economic activity, human livelihood, property and lives. The damage is expected to increase in the future as a result of climate change. An advanced flood warning system could provide achievable non-structural measures for reducing such damages. In this study, we applied a modelling system which intergrates a 1-D river flow model and a 2-D surface flow model for simulating hydrodynamic flows in the river system and floodplain inundation. In the model, exchange of flows between the river and surface floodplain is calculated through established links, which determine the overflow from river nodes to surface grids or vice versa. These occur due to overtopping or failure of the levee when water height surpasses levee height. A GIS based comprehensive raster database of different spatial data layers was prepared and used in the model that incorporated detailed information about urban terrain features like embankments, roads, bridges, culverts, etc. in the simulation. The model calibration and validation were made using observed data in some gauging stations and flood extents in the floodplain. This research serves as an example how advanced modelling combined with GIS data can be used to support the development of efficient strategies for flood emergency and evacuation but also for designing flood mitigation measures.

  • PDF

Application of the Artificial Neurons Networks Model uses under the condition of insufficient rainfall data for Runoff Forecasting in Thailand

  • Mama, Ruetaitip;Jung, Kwansue;Kim, Minseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.398-398
    • /
    • 2015
  • To estimate and forecast runoff by using Aritifitial Neaural Networks model (ANNs). it has been studied in Thailand for the past 10 years. The model was developed in order to be conformed with the conditions in which the collected dataset is short and the amount of dataset is inadequate. Every year, the Northerpart of Thailand faces river overflow and flood inundation. The most important basin in this area is Yom basin. The purpose of this study is to forecast runoff at Y.14 gauge station (Si-Satchanalai district, Sukhothai province) for 3 days in advance. This station located at the upstream area of Yom River basin. Daily rainfall and daily runoff from Royal Irrigation Department and Meteorological Department during flood period 2000-2012 were used as input data. In order to check an accuracy of forecasting, forecasted runoff were compared with observed data by pursuing Nash Sutcliffe Efficiency (NSE) and Coefficient of Determination ($R^2$). The result of the first day gets the highest accuracy and then decreased in day 2 and day 3, consequently. NSE and $R^2$ values for frist day of runoff forecasting is 0.76 and 0.776, respectively. On the second day, those values are 0.61 and 0.65, respectively. For the third day, the aforementioned valves are 0.51 and 0.52, respectively. The results confirmed that the ANNs model can be used when the range of collected dataset is short and insufficient. In conclusion, the ANNs model is suitable for applying during flood incident because it is easy to use and does not require numerous parameters for simulating.

  • PDF