• Title/Summary/Keyword: Basicity amine

Search Result 18, Processing Time 0.027 seconds

Kinetic Study on Aminolysis of 4-Nitrophenyl Isonicotinate in Acetonitrile: Effect of Amine Basicity on Reactivity and Reaction Mechanism

  • Shin, Minah;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2130-2134
    • /
    • 2014
  • A kinetic study is reported on nucleophilic substitution reactions of 4-nitrophenyl isonicotinate (7) with a series of cyclic secondary amines in MeCN. The plots of $k_{obsd}$ vs. [amine] curve upward for the reactions with weakly basic amines (e.g., morpholine, 1-(2-hydroxyethyl)piperazine, and piperazine) but are linear for those with strongly basic amines (e.g., piperidine and 3-methylpiperidine). The curved plots for the reactions with the weakly basic amines are typical for reactions reported previously to proceed through uncatalyzed and catalyzed routes with two intermediates (e.g., a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$). In contrast, the linear plots for the reactions with the strongly basic amines indicate that the catalytic route (i.e., the deprotonation process to yield $T^-$ from $T^{\pm}$ by a second amine molecule) is absent. The Br${\o}$nsted-type plots for $Kk_2$ and $Kk_3$ (i.e., the rate constants for the uncatalyzed and catalyzed routes, respectively) exhibit excellent linear correlations with ${\beta}_{nuc}$ = 0.99 and 0.69, respectively. The effect of amine basicity on the reaction mechanism is discussed in detail.

A Kinetic Study for the Reaction of 2,4-Dinitrophenyl Benzoate with Secondary Cyclic Amines

  • 엄익환;김명진;민지숙;권동숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.523-527
    • /
    • 1997
  • Apparent second-order rate constants (kapp) have been measured spectrophotometrically for the reaction of 2,4-dinitrophenyl benzoate (DNPB) with 6 secondary cyclic amines in H2O containing 20 mole% DMSO at 25.0±0.1 ℃. The Bronsted-type plot (log kapp vs. pKa) shows a break at pKa near 9.1, e.g. two straight lines with βapp values of 0.67 and 0.44 for the low basic (pKa < 9.1) and the highly basic (pKa > 9.1) amines, respectively. Using an estimated k2 value of 3×109 sec-1, all the other microconstants (k1, k-1 and K) involved in the present aminolysis have been calculated. The k value decreases with increasing the basicity of amines while k1 and K values increase with increasing the amine basicity, as expected. Good linear Bronsted-type plots have been obtained for these microconstants of the present aminolysis of DNPB. The magnitudes of the slope of the Bronsted-type plots, k1 and k-1 have been calculated to be 0.43 and - 0.24, respectively, indicating the k-1 step is about two folds less sensitive than the k1 step to the amine basicity. The K value has been calculated to be 0.66, which appears to be much smaller than the one for other aminolyses showing general base catalysis. The small K value has been attributed to the absence of general base catalysis in the present aminolysis of DNPB.

Charge-Transfer Complex Formation of Amines with Organic Halides (II) Complex Forming Tendency by Various Electron Acceptors (아민과 有機할로겐 化合物間의 Charge Transfer Complex 形成에 關한 硏究 (II) Electron Acceptor 에 따른 Charge Transfer Complex 形成能에 關한 硏究)

  • Kim, Yoo-Sun;Oh, Jung-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.126-131
    • /
    • 1967
  • Various amines (Triethylamine, Diethylamine, Dimethylaniline, Pyridine and Diphenylamine) and electron acceptors (Carbontetrachloride, iodine monochloride and iodine) were reacted in the hexane solvent system to form a charge transfer complex in each case. The tendency of forming a charge transfer complex by these electron acceptors was proportional to the basicity of amines and the different type of complex was formed as the polarity of electron donor had markedly changed, which were identified by ultraviolet spectrophotometry. A correlation between the formation of complex and the basicity of amine and the polarity of electron acceptor was discussed.

  • PDF

Application of Two Centre Huckel Method for Basicity of the Polydentate Amine Ligands (여러자리 아민리간드의 염기도에 대한 이중심 Huckel 법의 응용)

  • Kim, Ja Hong;Lee Kae Soo
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.317-319
    • /
    • 1978
  • The change of the electron densities of polydentate amine ligands in the reaction of protonation are discussed on the basis of the calculation by Two Center Huckel method. From results, such as ${\Delta}E_{\sigma}$, $q_N,\;q_H$ , and observed pKb, it is concluded that the stabilities of polydentate amine ligands are in the order of trien > en > gly > dien.

  • PDF

A Mechanistic Study on Addition Reactions of Alicyclic Amines to 3-Butyn-2-one

  • 음익환;이정숙;육성민
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.7
    • /
    • pp.776-779
    • /
    • 1998
  • Second-order rate constants have been measured spectrophotometrically for the addition reaction of a series of alicyclic amines to 3-butyn-2-one to yield their respective enamines at 25.0 'C. The reactivity of the amines increases with increasing the basicity of the amines. However, the Bronsted-type plot obtained exhibits a downward curvature as the basicity of the amines increases, i.e. βnuc decreases from 0.3 for low basic amines (pKa < 9) and to 0.1 for highly basic amines (pKa > 9). Such a curvature in the Bronsted-type plot is clearly indicative of a change in the reaction mechanism or transition state structure. From the corresponding reactions run in D2O, the magnitude of kinetic isotope effect (KIE) has been calculated to be about 0.8 for highly basic amines and 1.21 for weakly basic amines. The difference in the magnitude of KIE also supports a change in the reaction mechanism or transition state structure upon changing the basicity of the amines. Furthermore, the small KIE clearly suggests that H+ transfer is not involved in the rate-determining step, i.e. the addition reaction is considered to proceed via a stepwise mechanism in which the attack of the amines to the acetylene is the rate-determining step. The curvature in the Bronsted-type plot has been attributed to a change in the degree of bond formation between the amine and the acetylene.

Amine and Olefin Complexes of Pt(II) Having a PCP-Pincer Ligand

  • Park, Soon-Heum
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.132-136
    • /
    • 2002
  • $Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(OTf)\;(OTf=CF_3SO_3^-)$ readily reacts with various amines to afford cationic amine complexes $[Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(amine)](OTf)\;(amine=NH_3,\;NHMe_2,\;NHC_4H_8,\;NH_2Ph,\;NH_2(Tol-p))$ in high yields. These complexes have been fully characterized by IR, $^1H-,\;^{19}F{^1H}-,\;and\;^{31}P{^1H}-NMR$ spectroscopy, and elemental analyses. Reaction of $Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(OTf)$ with acrylonitrile quantitatively produced the ${\pi}$-olefinic complex $Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(CH_2=CHCN)](OTf)$ which is only stable in solution in the presence of acrylonitrile. Attempt at isolating this complex in the pure solid state was failed due to partial decomposition into $Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(OTf)$ The equilibrium constants $(K_{eq}=[Pt(PCP)-(NH_2R)^+][CH_2=CHCN]/[Pt(PCP)(CH_2=CHCN)^+][NH_2R]:\;[Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(CH_2=CHCN)]^++NH_2R{\rightleftarrows}[Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(NH_2R)]^++CH_2=CHCN=Ph,\;p-tolyl)$ were calculated to be 0.28 (for R = Ph) and 3.1 (R = p-tolyl) at $21^{\circ}C$. The relative stability of the ${\sigma}$-donor amine versus the ${\pi}$-olefinic acrylonitrile complex has been found largely dependent upon the amine-basicity $(pK_b)$, implicating that acrylonitrile practically competes with amine in the platinum coordination sphere. On the contrary to the formation of the acrylonitrile complex, no reaction of $Pt(2,6-(Cy_2PCH_2)_2C_6H_3)(OTf)$ with other olefins such as ethylene, styrene and methyl acrylate was observed.

Knoevenagel Condensation Reaction Using Amine-functionalized MCM-41 Base Catalysts (아민고정화 MCM-41 염기촉매를 이용한 Knoevenagel 축합반응)

  • Choi, Jung-Sik;Ahn, Wha-Seung
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.417-423
    • /
    • 2006
  • A series of amine functionalized MCM-41 catalysts were prepared by aminopropyltrimethoxysilane grafting and their catalytic performance in Knoevenagel reaction of selected substrates was investigated. Water resistant and catalytically active amine grafted MCM-41 was prepared by post-synthetic silylation using methyltrimethoxysilane ; hydrogen bonding of the water molecules formed during the condensation reaction to the active N group was suppressed, which led to high TON of the reaction. Amine functionalized MCM-41 prepared by coating method produced high conversion, but the TON of the catalyst was much lower than that of the amine grafted MCM-41; pore volume of the functionalized MCM-41 decreased substantially and large portion of the immobilized amine is believed to be hydrogen bonded to each other, which can result in decrease in the basicity of the N group. A secondary amine group was prepared by room temperature condensation between aminopropylsilane and chloropropylsilane, and the MCM-41 grafted with the secondary amine group demonstrated the highest catalytic activity among the catalysts prepared.

Influence of Amine Surface Treatment on Carbon Dioxide Adsorption Behaviors of Activated Carbon Nanotubes (아민 처리가 탄소나노튜브의 이산화탄소 흡착거동에 미치는 영향)

  • Jang, Dong-Il;Cho, Ki-Sook;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.658-662
    • /
    • 2009
  • In this work, the amine-treated activated carbon nanotubes (A-MWNTs) were used to investigate the $CO_2$ adsorption behaviors. A-MWNTs were prepared by impregnation with amine in methanol after chemical activation methods using a KOH. The characteristics of amine-treated A-MWNTs were studied by X-ray photoelectron spectroscopy (XPS), $N_2$ adsorption, desorption isotherms at 77 K. The specific surface area and pore volume of the A-MWNTs were analyzed by BET equation, BJH method, and t-plot method. $CO_2$ capture capacity as a function of temperature was measured by temperature programmed desorption (TPD). From the results, the amine treatment increased the basicity and nitrogen content of the A-MWNTs. The $CO_2$ adsorption capacity of the amine-nontreated A-MWNTs showed the highest value at room temperature and then greatly decreased with increasing the temperature. However, the amine-treated A-MWNTs presented a softer slope with temperature compared to the amine-nontreated ones. It was due to the strong interactions between $CO_2$ and amino groups presented on the carbon surfaces studied.

A Study on the Photoreaction between Organic Halides and Amines (有機 Halides 와 Amines 間의 光反應에 關한 硏究)

  • Kim, You-Sun;Park, Yong-Ja
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.148-154
    • /
    • 1962
  • The reactions between organic halides$(CCl_4,\;C_6H_5Br,\;C_6H_5Cl,\;C_6H_5I)$ and amines $(C_6H_5NH_2,\;R_2NH,\;R_3N,\;(CH_2)_5NH,\;pyridine)$ were studied under mixed u.v. irradiation. The modes of reactions were examined by means of gas chromatography and product-reactant ratio determination. The reaction of $CCl_4$ with amines give chloroform and hexachloroethanes, and the reaction of aromatic halides with amines gave biphenyl and benzene. In each series of reaction there obtained mainly corresponding amine hydrohalides, but no amination products. The reactivity was in the order of the basicity of amines and of the reactivity of organic hahides, except in the case of cyclic tertiary amine. The result was interpreted as a non-chain photodecomposition process. A competitive proton abstraction reaction path via the formation of a change transfer complex was proposed as the reaction mechanism.

  • PDF