• Title/Summary/Keyword: Base-seismic isolation

Search Result 277, Processing Time 0.023 seconds

Experimental Study on Seismic Performance of Base-Isolated Bridge (지진 격리된 교량의 내진성능에 대한 실험적 연구)

  • Chung, Woo-Jung;Yun, Chung-Bang;Kim, Nam-Sik;Seo, Ju-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.144-153
    • /
    • 1998
  • Base isolation is an innovative design strategy that provides a practical alternative for the seismic design of structures. Base isolators, mainly employed to isolate large structures subjected to earthquake ground excitations and to rehabilitate structures damaged by past earthquakes, deflect and absorb the seismic energy horizontally transmitted to the structures. This study demonstrates that the base isolation system may offer effective performance for bridges during severe seismic events through shaking table tests. Two base isolation system using laminated rubber bearings with and without hydraulic dampers are tested. The test results strongly show that the laminated rubber bearings cause the natural period of the bridge structure increased considerably, which results in the deck acceleration and the shear forces on the piers reduced significantly. The results also demonstrate that the hydraulic dampers enhance the system's capacity in dissipating energy to reduce the relative displacement between the bridge deck and the pier.

  • PDF

Reduction in Seismic Response of URANUS Liquid Metal Reactor by Using Three-Dimensional Seismic Isolator (3차원 면진장치를 이용한 URANUS 액체금속로의 지진응답감소)

  • Lee, Kuk-Hee;Kim, Yun-Jae;Ryu, Kang-Mook;Hwang, Il Soon;Yoo, Bong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.30-39
    • /
    • 2011
  • URANUS (Ubiquitous, Robust, Accident-forgiving, Non-proliferating, Ultra-lasting and Sustainer) has been developed with 35MWe (100MWth) operating without primary coolant pump, capitalizing on natural circulation capability of lead-bismuth eutectic (LBE) for long-life small and robust power units. To ensure the structural integrity, the large safety margin against Safe Shutdown Earthquake, 0.3g, and furthermore the cost effectiveness for URANUS, three-dimensional seismic base isolation design has been developed. The analytical model has been developed and seismic time history analyses have been carried out. The advantage for using three-dimensional seismic base isolation for URANUS has been discussed.

Application of Isolation System to the Lighthouse Structure (등대구조물의 면진시스템 적용방안 연구)

  • Hur, Moo Won;Chun, Young Soo;Kim, Dong Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.27-36
    • /
    • 2013
  • In this study, seismic isolation technology to the lighthouse structure is suggested and isolation effects on response reduction are studied for three types of isolation models with the proposed seismic isolation technology. A seismic isolation system is installed on the base of the lighthouse structure in model 1, on the base of the lighthouse lens in model 2, and on the base of both of them in model 3. The dynamic time history analysis verifies that in case of model 1, the earthquake loading is greatly reduced and the accelerations of superstructure are greatly reduced. Also, the inter-story drifts are very small and can be neglected. The isolated model is in translational state and can be seen as a rigid whole. as a results, model 1 is very effective to mitigate the influence of earthquake on structures. In model 2, isolation effects are valid but special care should be taken to failure of the non-isolated lighthouse sub-structure. In model 3, isolation effects are also valid but the effects are small. model 3 is less effective than model 1.

Overview of the development of smart base isolation system featuring magnetorheological elastomer

  • Li, Yancheng;Li, Jianchun
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.37-52
    • /
    • 2019
  • Despite its success and wide application, base isolation system has been challenged for its passive nature, i.e., incapable of working with versatile external loadings. This is particularly exaggerated during near-source earthquakes and earthquakes with dominate low-frequency components. To address this issue, many efforts have been explored, including active base isolation system and hybrid base isolation system (with added controllable damping). Active base isolation system requires extra energy input which is not economical and the power supply may not be available during earthquakes. Although with tunable energy dissipation ability, hybrid base isolation systems are not able to alter its fundamental natural frequency to cope with varying external loadings. This paper reports an overview of new adventure with aim to develop adaptive base isolation system with controllable stiffness (thus adaptive natural frequency). With assistance of the feedback control system and the use of smart material technology, the proposed smart base isolation system is able to realize real-time decoupling of external loading and hence provides effective seismic protection against different types of earthquakes.

Seismic Fragility Evaluation of Isolated NPP Containment Structure Considering Soil-Structure Interaction Effect (지반-구조물 상호작용 효과를 고려한 지진격리시스템이 적용된 원전 격납건물의 지진 취약도 평가)

  • Eem, Seung Hyun;Jung, Hyung Jo;Kim, Min Kyu;Choi, In Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.53-59
    • /
    • 2013
  • Several researches have been studied to enhance the seismic performance of nuclear power plants (NPPs) by application of seismic isolation. If a seismic base isolation system is applied to NPPs, seismic performance of nuclear power plants should be reevaluated considering the soil-structure interaction effect. The seismic fragility analysis method has been used as a quantitative seismic safety evaluation method for the NPP structures and equipment. In this study, the seismic performance of an isolated NPP is evaluated by seismic fragility curves considering the soil-structure interaction effect. The designed seismic isolation is introduced to a containment building of Shin-Kori NPP which is KSNP (Korean Standard Nuclear Power Plant), to improve its seismic performance. The seismic analysis is performed considering the soil-structure interaction effect by using the linearized model of seismic isolation with SASSI (System for Analysis of Soil-Structure Interaction) program. Finally, the seismic fragility is evaluated based on soil-isolation-structure interaction analysis results.

Seismic design for application of LNG storage tank isolation system (LNG 저장탱크의 면진시스템 적용을 위한 내진설계)

  • Seo, Ki-Young;Park, Jae-Hyun;Yang, Seong-Yeong;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.132-138
    • /
    • 2013
  • Natural gas as a clean fuel of the world demand for the trend is gradually increasing demand for clean energy in the country and there is growing interest. Therefore, LNG storage tanks and related facilities in the country of the importance of leading a community-based facility has emerged. So common sense that an earthquake with a seismic isolation device LNG storage tank similar to the actual behavior of the analytical model which can describe the development and construction of storage tanks to enhance the safety and economic design techniques need to be developed. In this study, a base isolation system, seismic analysis procedure of LNG storage tanks, and Triple-FPB developed a mathematical model of the present crystallized and complexity factors to the sum over histories model simplifies the complex behavior of the LNG storage tank with base isolation system how to interpret the seismic isolation is proposed.

  • PDF

Seismic Response of Apartment Building with Base Isolation System Consisting of Sliding-type Bearing and Lend Rubber Bearing (LRB와 슬라이딩베어링을 혼용한 면진시스템을 적용한 아파트 건물의 지진 응답)

  • Chun, Young-Soo;Yoon, Young-Ho;Whang, Ki-Tea;Chang, Kug-Kwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.507-514
    • /
    • 2007
  • This paper summarizes the results of a research on the isolate effects and economical efficiencies of seismic isolation design compared with the existing earthquake-resistant design, and presents seismic performance of the base isolation system consisting of sliding-type bearing and lead rubber bearing (LRB) compared with that consisting of the LRB only. From the results of the research, it is verified that seismic isolation is very effective to mitigate the influence of earthquake on structures and it is possible to increase the serviceability due to decrease of the floor acceleration. Also, from the point of view of reduction of story acceleration and base shear, the base isolation system consisting of sliding-type bearing and LRB is more effective than that with LRB only. In respect of economical efficiency, special care should be taken in using this method since costs which have to be paid in proportin to increased performance are high.

Bound of aspect ratio of base-isolated buildings considering nonlinear tensile behavior of rubber bearing

  • Hino, J.;Yoshitomi, S.;Tsuji, M.;Takewaki, I.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.351-368
    • /
    • 2008
  • The purpose of this paper is to propose a simple analysis method of axial deformation of base-isolation rubber bearings in a building subjected to earthquake loading and present its applicability to the analysis of the bound of the aspect ratio of base-isolated buildings. The base shear coefficient is introduced as a key parameter for the bound analysis. The bound of the aspect ratio of base-isolated buildings is analyzed based on the relationship of the following four quantities; (i) ultimate state of the tensile stress of rubber bearings based on a proposed simple recursive analysis for seismic loading, (ii) ultimate state of drift of the base-isolation story for seismic loading, (iii) ultimate state of the axial compressive stress of rubber bearings under dead loads, (iv) prediction of the overturning moment at the base for seismic loading. In particular, a new recursive analysis method of axial deformation of rubber bearings is presented taking into account the nonlinear tensile behavior of rubber bearings and it is shown that the relaxation of the constraint on the ultimate state of the tensile stress of rubber bearings increases the limiting aspect ratio.

Probabilistic sensitivity of base-isolated buildings to uncertainties

  • Gazi, Hatice;Alhan, Cenk
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.441-457
    • /
    • 2018
  • Characteristic parameter values of seismic isolators deviate from their nominal design values due to uncertainties and/or errors in their material properties and element dimensions, etc. Deviations may increase over service life due to environmental effects and service conditions. For accurate evaluation of the seismic safety level, all such effects, which would result in deviations in the structural response, need to be taken into account. In this study, the sensitivity of the probability of failure of the structures equipped with nonlinear base isolation systems to the uncertainties in various isolation system characteristic parameters is investigated in terms of various isolation system and superstructure response parameters in the context of a realistic three-dimensional base-isolated building model via Monte Carlo Simulations. The inherent record-to-record variability nature of the earthquake ground motions is also taken into account by carrying out analyses for a large number of ground motion records which are classified as those with and without forward-directivity effects. Two levels of nominal isolation periods each with three different levels of uncertainty are considered. Comparative plots of cumulative distribution functions and related statistical evaluation presented here portray the potential extent of the deviation of the structural response parameters resulting from the uncertainties and the uncertainty levels considered, which is expected to be useful for practicing engineers in evaluating isolator test results for their projects.

Multi-objective Fuzzy Control of a Spacial Structure using Smart Base Isolation System (스마트 면진시스템을 이용한 대공간 구조물의 다목적 퍼지제어)

  • Kang, Joo-Won;Kim, Hyun-Su;Lim, Jun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.89-99
    • /
    • 2011
  • In this study, a smart base isolation system has been proposed to reduce dynamic responses of a spacial structure subjected to seismic excitation. MR dampers and low damping elastomeric bearings were used to compose a smart base isolation system and its vibration control performance has been investigated compared to that of the optimally designed lead-rubber bearing (LRB) isolation system. Control performance of smart base isolation system depends on control algorithm. Fuzzy controller was used in this study to effectively control the spacial structure having a smart base isolation system. Dynamic responses of the spacial structure with isolation system is conflict with base drifts and thus these two responses are selected as objective functions to apply multi-objective genetic algorithm to optimization of fuzzy controller. Based on numerical simulation results, it has been shown that the smart base isolation system proposed in this study can drastically reduce base drifts and seismic responses of the example spacial structure in comparison with the optimally designed LRB isolation system.