• Title/Summary/Keyword: Basalts

Search Result 77, Processing Time 0.022 seconds

Sr, Nd and Pb Isotopic Compositions of the Pyeongtaek-Asan Alkali Basalts: Implication to the Contrasting Compositional Boundary for the Mantle beneath Korean Peninsula (평택-아산 알칼리 현무암의 Sr, Nd 및 Pb 동위원소 조성: 한반도 아래 맨틀의 대조적인 조성 경계에 대한 의미)

  • Park, Kye-Hun;Cheong, Chang-Sik;Jeong, Youn-Joong
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.144-153
    • /
    • 2008
  • Sr, Nd, Pb isotopic compositions of the Cenozoic basaltic rocks distributed in Pyeongtaek-Asan area display significantly enriched values compared with mid-ocean ridge basalts just like other Cenozoic basalts of Korea. The isotopic compositions of most of the Cenozoic basaltic rocks of Korea including those from Pyeongtaek-Asan area can be explained as mixing between enriched mantle component with relatively low $^{206}Pb/^{204}Pb$ ratios and depleted mantle component. In contrast, Jejudo basalts can be explained as mixing between enriched mantle component with realtively higher $^{206}Pb/^{204}Pb$ ratios and depleted mantle componsnt. Combined with that very similar division of enriched mantle components is applied to the Cenozoic basalts of northeast China and southeast China, it is suggested that subcontinental lithospheric mantle of central and southern parts of Korea represents eastern extension of North China Block and South China Block respectively. The indentation model for the late Paleozoic to early Mesozoic continental collision of China contradicts to such an interpretation, because it cannot explain occurrence of subcontinental lithospheric mantle component of South China Block-affinity under the Jejudo area. Instead, it is more probable that suture zone of the two continental blocks crosses between central and southern Korea and its location is further south from the Pyeongtaek-Asan area. Such distinct location compared with Imjingal belt, supposedly collisional boundary suggested before, suggests that mantle boundary may not be coincide with crustal boundary for the continental collision.

Seismic wave propagation through surface basalts - implications for coal seismic surveys (지표 현무암을 통해 전파하는 탄성파의 거동 - 석탄 탄성파탐사에 적용)

  • Sun, Weijia;Zhou, Binzhong;Hatherly, Peter;Fu, Li-Yun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Seismic reflection surveying is one of the most widely used and effective techniques for coal seam structure delineation and risk mitigation for underground longwall mining. However, the ability of the method can be compromised by the presence of volcanic cover. This problem arises within parts of the Bowen and Sydney Basins of Australia and seismic surveying can be unsuccessful. As a consequence, such areas are less attractive for coal mining. Techniques to improve the success of seismic surveying over basalt flows are needed. In this paper, we use elastic wave-equation-based forward modelling techniques to investigate the effects and characteristics of seismic wave propagation under different settings involving changes in basalt properties, its thickness, lateral extent, relative position to the shot position and various forms of inhomogeneity. The modelling results suggests that: 1) basalts with high impedance contrasts and multiple flows generate strong multiples and weak reflectors; 2) thin basalts have less effect than thick basalts; 3) partial basalt cover has less effect than full basalt cover; 4) low frequency seismic waves (especially at large offsets) have better penetration through the basalt than high frequency waves; and 5) the deeper the coal seams are below basalts of limited extent, the less influence the basalts will have on the wave propagation. In addition to providing insights into the issues that arise when seismic surveying under basalts, these observations suggest that careful management of seismic noise and the acquisition of long-offset seismic data with low-frequency geophones have the potential to improve the seismic results.

Extinction, Flood Basalts, and Geomagnetic Field (멸종, 범람 현무암과 지구자기장)

  • Yu, Yong-Jae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.33-36
    • /
    • 2008
  • For the past 300 Ma, massive extinctions are associated with major flood basalt eruptions. The geomagnetic Superchrons (Cretaceous Normal Superchron, Kiaman Long Reversed Superchron, Moyero Long Reversed Superchron) precede the major flood basalt eruptions and massive extinctions. It is likely that upswing of mantle plumes is responsible for the generation of continental flood basalt. Eruption of flood basalts results in a catastrophic climate change as well as a massive genus depletion.

  • PDF

Cohesion and Internal Friction Angle of Basalts in Jeju Island (제주도 현무암의 점착력과 내부 마찰각)

  • Yang, Soon-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.33-40
    • /
    • 2015
  • Volcanic rocks in Jeju Island indicate the differences in geological and mechanical characteristics from region to region, and have vesicular structure caused by various environmental factors. In this study, triaxial compressive strength tests were conducted for intact rocks sampled in northeastern onshore and offshore, southeastern offshore and northwestern offshore of Jeju Island. The estimated cohesion and internal friction angle from the results of triaxial compression tests were compared and analyzed with absorption, a parameter representing the vesicular properties of basalts in Jeju Island. As a result, it was found that the relationship between cohesion and absorption could be classified clearly, considering two different linear relationships in bulk specific gravity and absorption. As the absorption increases, the cohesion decreases exponentially. In addition, the internal friction angle decreases almost linearly with increasing in the absorption, regardless of the relationships in bulk specific gravity and absorption.

Temporal variation of magma chemistry in association with extinction of spreading, the fossil Antarctic-Phoenix Ridge, Drake Passage, Antarctica

  • Choe, Won-Hie;Lee, Jong-Ik;Lee, Mi-Jung;Hur, Soon-Do;Jin, Young-Keun
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.136-141
    • /
    • 2005
  • The K Ar ages, whole rock geochemistry and Sr Nd Pb isotopes have been determined for the submarine basalts dredged from the P2 and P3 segments of the Antarctic-Phoenix Ridge (APR), Drake Passage, Antarctica, for better understanding on temporal variation of magma chemistry in association with extinction of seafloor spreading. The fossilized APR is distant from the known hot spots, and consists of older N-MORB prior to extinction of spreading and younger E-MORB after extinction. The older N-MORB (3.5-6.4 Ma) occur in the southeast flank of the P3 segment (PR3) and the younger E-MORB (1.4-3.1 Ma) comprise a huge seamount at the P3 segment (SPR) and a big volcanic edifice at the P2 segment (PR2). The N-type PR3 basalts have higher Mg#, K/Ba, and CaO/Al2O3 and lower Zr/Y, Sr, and Na8.0 with slight enrichment in incompatible elements and almost flat REE patterns. The E-type SPR and PR2 basalts are highly enriched in incompatible elements and LREE. The extinction of spreading occurring at 3.3 Ma seems to have led to a temporal magma oversupply with E-MORB signatures. Geochemical signatures such as Ba/TiO2, Ba/La, and Sm/La suggest heterogeneity of upper mantle and formation of E-MORB by higher contribution of enriched materials to mantle melting, compared to N-MORB environment. E-MORB magmas beneath the APR seem to have been produced by low melting degree (up to 1% or more) at deeper low-temperature regime, where metasomatized veins consisting of pyroxenites have preferentially participated in the melting. The occurrence of E-MORB at the APR is a good example to better understand what kinds of magmatism would occur in association with extinction of spreading.

  • PDF

The Basalts and Volcanic Process in the Seondol Cinder Cone, Seobjikoji Area, Jeju Island (제주도 섭지코지 선돌 분석구의 화산작용과 현무암)

  • Koh, Jeong-Seon;Yun, Sung-Hyo;Kim, Suck-Youn
    • Journal of the Korean earth science society
    • /
    • v.28 no.4
    • /
    • pp.462-477
    • /
    • 2007
  • The purpose of this study is to determine the petrology of basalt and the volcanic process in the Seondol cinder cone, Seobjikoji area, eastern Jeju Island. The Seondol cinder cone is mainly composed of spatters in the lower part, pyroclastic deposits including reddish brown blocks, ashes with volcanic bombs in the middle part, and dark black scoria deposits in the upper part. The volcanic sequences suggest volcanic processes that progress through Strombolian eruption and end with Hawaiian lava effusion which breached the cinder cone northwestward and extended over northwestward as lava delta and basalt emplaced as a volcanic neck in the central part of crater in the cinder cone. The age of basalt lava flows is about $95\;{\pm}\;3\;ka$. The basalts belong to transitional basalt and show products of fractional crystallization of clinopyroxene and olivine from a parental basalt magma on the basis of variation diagram of major, trace and rare earth elements. Basalts in the region of this study are plotted at the region of within plate basalt.

Magma Pathway of Alkali Volcanic Rocks in Goseong, Gangwon-do, Korea (강원도 고성지역에 분포하는 알칼리 현무암질 마그마의 상승경로)

  • Kil, Young-Woo;Shin, Hong-Ja;Ko, Bo-Kyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.196-207
    • /
    • 2007
  • Miocene basalt plugs in Goseong contain a large variety of crustal and mantle xenoliths and xenocrysts. One of basalt plugs, Unbongsan, are derived from 160 km depth. Whole-rock geochemistry and pressure and temperature conditions of mineral phases indicate that Unbongsan volcanic rocks are alkali basalts and the source magma of the alkali basalts was generated from about $0.2{\sim}2%$ partial melting of depleted garnet peridotite. Crystallization pressures and temperatures of mineral phases within ascending magma of Unbongsan alkali basalt indicate that olivines, clinopyroxenes, and plagioclases were crystallized at $75{\sim}110km,\;40{\sim}52km,\;37{\sim}54km$ depth, respectively. The ascending magma of Unbongsan alkali basalts enclosed mantle xenoliths at about $57{\sim}67km$ depth.

Petrology of the Taeheung-ri Lava in Southeastern Jeju Island (제주도 남동부 태흥리 용암에 대한 암석학적 연구)

  • 윤성효;고정선;박정미
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.17-28
    • /
    • 2002
  • This study has been designed to elucidate the petrography and geochemical characteristics of the Taeheung-ri lava in southeastern Jeju Island. The lava is divided into the alkaline basalt and tholeiitic basalt. More than 4 layers of tholeiitic basalt are overlain by layers of alkaline basalt. Compared with alkaline basalt, tholeiitic basalt has lower contents of $K_2O$, $P_2O_5$, Ba and Ta, but slight higher contents of $SiO_2$ and CaO. The contents of Ba and Rb of all basalts are enriched, but those of Ni and Cr are depleted compared with primitive mantle compositions. All basalts show inclined chondrite-normalized REE patterns with LREE enriched more than HREE and alkaline basalt has relatively higher. The basalts of this study area are plotted in the field of within plate basalt on the tectonomagmatic discrimination diagram. Tholeiitic basalt has higher ratios of Zr/Nb, Y/Nb, and $Al_2O_3/P_2O_5$ than alkaline basalt. Both tholeiitic and alkaline basalt are similar in their K/Ba ratios. The geochemical data suggest that the parental magma of both basalts might be produced by different degrees of partial melting of similar source mantle. The tholeiitic basalt formed by higher degree of partial melting than the alkaline basalt.