Magma Pathway of Alkali Volcanic Rocks in Goseong, Gangwon-do, Korea

강원도 고성지역에 분포하는 알칼리 현무암질 마그마의 상승경로

  • Kil, Young-Woo (Geological Museum, Korea Institute of Geoscience and Mineral Resources) ;
  • Shin, Hong-Ja (Geological Museum, Korea Institute of Geoscience and Mineral Resources) ;
  • Ko, Bo-Kyun (School of Earth and Environmental Sciences, Seoul National University)
  • 길영우 (한국지질자원연구원 지질박물관) ;
  • 신홍자 (한국지질자원연구원 지질박물관) ;
  • 고보균 (서울대학교 지구환경과학부)
  • Published : 2007.12.31

Abstract

Miocene basalt plugs in Goseong contain a large variety of crustal and mantle xenoliths and xenocrysts. One of basalt plugs, Unbongsan, are derived from 160 km depth. Whole-rock geochemistry and pressure and temperature conditions of mineral phases indicate that Unbongsan volcanic rocks are alkali basalts and the source magma of the alkali basalts was generated from about $0.2{\sim}2%$ partial melting of depleted garnet peridotite. Crystallization pressures and temperatures of mineral phases within ascending magma of Unbongsan alkali basalt indicate that olivines, clinopyroxenes, and plagioclases were crystallized at $75{\sim}110km,\;40{\sim}52km,\;37{\sim}54km$ depth, respectively. The ascending magma of Unbongsan alkali basalts enclosed mantle xenoliths at about $57{\sim}67km$ depth.

강원도 고성지역에는 여러 종류의 포획암과 포획결정을 내포한 마이오세 현무암들이 화산전(volcanic plug) 형태를 이루며 분포한다. 이들 화산전중에서 운봉산화산전의 근원마그마는 지하 160km 깊이에서 형성되어 지표로 올라왔다. 전암화학분석, 구성광물의 평형온도 및 압력은 운봉산화산전을 형성한 화산암이 알칼리현무암이며, 결핍된 석류석 페리도타이트의 $0.2{\sim}2%$의 부분용융에 의하여 형성되었음을 지시한다. 이 마그마는 감람석, 단사휘석, 사장석을 각각 $75{\sim}110km,\;40{\sim}52km,\;37{\sim}54km$ 깊이에서 정출하였으며, 맨틀포획암인 스피넬 페리도타이트를 지하 $57{\sim}67km$에서 포획하여 지표에 빠른 속도로 올라왔다.

Keywords

References

  1. 고정선, 윤성효, 2005, 강원도 고성군 일대의 후기 마이오세 현무암의 암석학적 연구. 지구과학회지, 26, 78-92
  2. 길영우, 이석훈, 2005, 백령도와 보운 지역의 상부맨틀암석내의 단사휘석의 지화학적 특징. 한국광물학회지, 18, 63-74
  3. 길영우, 신홍자, 진명식, 박명호, 2006, 아산, 평택 지역 화산암의 지화학적 특징. 대한자원환경지질학회 춘계 학술발표회 논문집, 493
  4. 김윤규, 이대성, 송윤규, 김선억, 1988, 보은지역 조곡리 현무암에 함유된 초염기성 포획암의 암석학. 지질학회지, 24, 57-66
  5. 나기창, 이문원, 1987, 백령도의 지질. 자연실태 종합보고서, 7, 33-48
  6. 박준범, 박계현, 1996, 한반도 중부의 신생대 알칼리 화산 암류에 대한 암석학 및 암석성인적 연구(I): 암석기재, 광물화학 및 전암 주성분원소. 지질학회지, 32, 223-249
  7. 이동영, 1996, 백령도, 조곡리, 제주, 한탄강, 울릉도, 아산일대의 신제3기 및 제4기 화산암의 K-Ar 연대. 한국동력자원연구소 연구보고서
  8. 이문원, 1984, 제주화산암류에 함유된 mafic 포획암. 지질학회지, 20, 306-313
  9. 이한영, 1995, 남한의 알칼리 현무암에 분포하는 맨틀포획암의 암석화학적 연구: 상부 맨틀의 온도 및 압력추정. 암석학회지, 4, 104-123
  10. 윤성효, 고정선, 안지영, 1998, 제주도 동부 알칼리 현무암 내 스피넬-레졸라이트 포획체의 연구, 자원환경지질학회지, 31, 447-458
  11. 신홍자, 길영우, 진명식, 이석훈, 2006, 아산, 평택 지역 상부맨틀 포획암의 암석학적 연구. 지질학회지, 42, 95-113
  12. 한국지질자원연구소, 1995, 한국 심성암 동위원소 연대지도 (1/1,000,000)
  13. Abe, N., Arai, S. and Yurimoto, H., 1998, Geochemical characteristics of the uppermost mantle beneath the Japan island arcs: implications for upper mantle evolution. Physics of Earth and Planetary Interiors, 107, 233-248 https://doi.org/10.1016/S0031-9201(97)00136-2
  14. Arai, S., Kida, M., Abe, N. and Yurimoto, H., 2001, Petrology of peridotite xneoliths in alkali basalt (11Ma) form Boun, Korea: an insight into the upper mantle beneath the East Asian continental margin. Journal of Mineralogical and Petrological Sciences, 96, 89-99 https://doi.org/10.2465/jmps.96.89
  15. Bertrand, P. and Mercier, J.C.C., 1985. The mutual solubility of coexisting ortho- and clinopyroxene: toward an absolute geothermometer for the natural system?. Earth and Planetary Science Letters, 76, 109-22 https://doi.org/10.1016/0012-821X(85)90152-9
  16. Brey, G.P. and Kohler, T., 1990, Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology, 31, 1353-1378 https://doi.org/10.1093/petrology/31.6.1353
  17. Choi, S-H., 2000, Oxidation state of mantle xenoliths from Jeju-do, South Korea. Geoscience Journal, 4, 211-220 https://doi.org/10.1007/BF02910139
  18. Choi, S-H. and Kwon, S-T., 2005, Mineral chemistry of spinel peridotite xenoliths from Baenganyeong Island, South Korea, and its implications for the paleogeotherm of the uppermost mantle. The Island Arc, 14, 236-253 https://doi.org/10.1111/j.1440-1738.2005.00469.x
  19. Choi, M-S., Cheong, C-S. and Park, K-H., 1994, An experimental study on the tmce element analysis of rock samples with regard to the decomposition method. The Journal of the Petrological Society of Korea, 3, 41-48
  20. Choi, S-H., Jwa, Y-J. and Lee, H-Y., 2001, Geothermal gradient of the upper mantle beneath Jeju Island, Korea: Evidence from mantle xenoliths. The Island Arc, 10, 175-193 https://doi.org/10.1046/j.1440-1738.2001.00317.x
  21. Choi, S-H., Lee, J-I., Park, C-H. and Moutte, J., 2002, Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea. The Island Arc, 11, 221-235 https://doi.org/10.1046/j.1440-1738.2002.00367.x
  22. Donnelly, K.E., Goldstein, S.L., Langmuir, C.H. and Spiegelman, M., 2004, Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth and Planetary Science Letters, 226, 347-366 https://doi.org/10.1016/j.epsl.2004.07.019
  23. Droop, G.T.R., 1987, A general equation for estimating $Fe^{3+}$ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51, 431-435 https://doi.org/10.1180/minmag.1987.051.361.10
  24. Green, D.H. and Falloon, T.J., 1998, Pyrolite: A Ringwood concept and its current expression. In The earth's mantle: composition, structure, and evolution (ed. I. Jackson), Cambridge university press, Cambridge, 311-378
  25. Halliday, A.N., Lee, D-C., Tommasini, S., Davies, G.R., Paslick, C.R., Fitton, J.G. and James, D.E., 1995, Incompatible tmce elements in OIB and MORB and source enrichement in the sub-oceanic mantle. Earth and Planetary Science Letters, 133, 379-395 https://doi.org/10.1016/0012-821X(95)00097-V
  26. Han, U. and Keehm, Y., 1996, A study on the heat flow distribution in the Korean peninsula and its vicinity. Jouranl of Geological Society of Korea, 32, 267-275
  27. Harte, B., 1977, Rock nomenclature with particular relation to deformation and recrystallization textures in olivinebearing xenolith. Journal of Geology, 85, 279-288 https://doi.org/10.1086/628299
  28. Hofmann, A. W., 1988, Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90, 297-314 https://doi.org/10.1016/0012-821X(88)90132-X
  29. Kim, S.G. and Li, Q., 1998, 3-D Crustal Velocity Tomography in the Southern part of the Korean peninsula. Journal of Korea Society of Economic and Environmental Geology, 31, 127-139
  30. Kim, K.H., Nagao, K., Tanaka, T., Sumino, H., Nakamum, T., Okuno, M., Lock, J.B., Youn, J.S. and Song, J., 2005, He-Ar and Nd-Sr isotopic compositions of ultramafic xenoliths and host alkali basalts from the Korean peninsula. Geochemical Journal, 39, 341-356 https://doi.org/10.2343/geochemj.39.341
  31. Kil, Y., 2002, Mantle evolution associated with the Rio Grande rift: geochemistry and geothermobarometry of upper mantle xenoliths, Ph.D. dissertation, Colorado School of Mines, 160p
  32. Kil, Y. and Wendlandt R.F., 2004, Pressure and temperature evolution of upper mantle under the Rio Grande Rift. Contributions to Mineralogy and Petrology, 148, 265-280 https://doi.org/10.1007/s00410-004-0608-9
  33. Kil, Y., 2006, Characteristics of subcontinental lithospheric mantle beneath Baegryeong Island, Korea: spinel peridotite xenoliths. The Island Arc, 15, 269-282 https://doi.org/10.1111/j.1440-1738.2006.00526.x
  34. Kil, Y., 2007, Geochemistry and petrogenesis of spinel lherzolite xenoliths from Boeun. Korea. Journal of Asian Earth Sciences, 29, 29-40 https://doi.org/10.1016/j.jseaes.2005.12.006
  35. Kohler, T.P. and Brey, G.P., 1990, Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural lherzolites from 2 to 60 kb with applications. Geochimica et Cosmochimica Acta, 54, 2375-2388 https://doi.org/10.1016/0016-7037(90)90226-B
  36. Langmuir, C.H. and Hanson, G.N., 1981, Calculating mineral-melt equilibria with stoichiometry, mass balance, and single component distribution coefficients. In Thermodynamics of Minerals and Melts (ed. R.C. Newton, A. Navrotsky, B.J. Wood), Springer, New York, 247-271
  37. Lee, D.S., 1980, Igneous activity and geotectonic interpretation in the Ogcheon geosynclinal zone, Korea-especially referred to ophiolite determination. Yeonsei Nonchong, 17, 109-137
  38. Mercier, J.C. and Nicolas, A., 1975, Texture and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts. Journal of Petrology, 16, 454-487 https://doi.org/10.1093/petrology/16.1.454
  39. Pollack, H.N. and Chapman, D.S., 1977, On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics, 38, 279-296 https://doi.org/10.1016/0040-1951(77)90215-3
  40. Putirka, K.D., Mikaelian, H., Ryerson, F. and Shaw, H., 2003, New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lava from Tibet and the Snake River Plain, Idaho. American Mineralogist, 88, 1542-1554 https://doi.org/10.2138/am-2003-1017
  41. Putirka, K.D., 2005a, Mantle potential temperature at Hawai, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally driven mantle plumes. Geochemistry Geophysics Geosystems, 6, Q05L08, DOI 10.1029/2005GC000915
  42. Putirka, K.D., 2005b, Igneous thermometers and barometers based on plagioclase+liquid equilibria: Tests of some existing models and new calibrations. American Mineralogist, 90, 336-346 https://doi.org/10.2138/am.2005.1449
  43. Roeder, P.L. and Emslie, R.F., 1970, Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29, 275-289 https://doi.org/10.1007/BF00371276
  44. Shaw, D.M., 1979, Trace element melting models. Physics and chemistry of the Earth, 11, 577-586 https://doi.org/10.1016/0079-1946(79)90055-7
  45. Shin, H-J., Kil, Y., Jin, M-S. and Lee, S-H., 2006, Petrological study on upper mantle xenoliths from Asan and Pyeongtaek area. Journal of the Geological Society of Korea, 42, 95-113
  46. Walter, M.J., 1998, Melting of garnet peridotite and the origin of komatite and depleted lithosphere. Journal of Petrology, 39, 29-60 https://doi.org/10.1093/petrology/39.1.29
  47. Wood, B.J. and Banno, S., 1973, Garnet-orthopyroxene and orthopyroxene- clinopyroxene relationships in simple and complex systems. Contributions to Mineralogy and Petrology, 42, 109-124 https://doi.org/10.1007/BF00371501
  48. Workman, R.K. and Hart, S.R., 2005, Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231, 53-72 https://doi.org/10.1016/j.epsl.2004.12.005