• Title/Summary/Keyword: mantle xenolith

Search Result 19, Processing Time 0.026 seconds

A Study on the Spinel-Lherzolite Xenolith in the Alkali Basalt from Eastern Cheju Island, Korea (제주도 동부 알칼리 현무암내 스피넬-레졸라이트 포획체의 연구)

  • Yun, Sung Hyo;Koh, Jeong Seon;Anh, Ji Young
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.447-458
    • /
    • 1998
  • The spinel Ihelzolite of ultramafic xenoliths are found in the alkali basalt from eastern part of the Cheju island, Korea. The xenolith is are mainly composed of olivine, orthopyroxene, clinopyroxene and spinel. Based on the chemical compositions of the constituent minerals, the ultramafic xenolith belong to upper mantle peridotite. Each minerals have a protogranular texture. Olivine with kink band texture partly shows undulatory extinction. Some clinopyroxenes have spongy textured rims. Brown spinels occur in the interstices between olivine and pyroxene grains. Olivine is mostly forsterite $(Fo_{89-90})$. Orthopyroxene is enstatite $(Wo_{1.3}En_{88.4}Fs_{10.3})$ with 3.87~5.25 wt% $Al_{2}O_{3}$. Clinopyroxene is diopside $(Wo_{48.0}En_{46.2}Fs_{5.8})$ with 6.75~5.03 wt% $Al_{2}O_{3}$. Spinel has the Mg value of 75.9 and its Cr-number is 10.2. According to the PoT estimations for the mantle xenoliths, equilibrium temperatures of the xenoliths range from 1023 to $1038^{\circ}C$ and pressure is 18 kbar. Spinellhelzolite from this area, which is characterized by lower Cr-number (10.2) and homogeneous chemical compositions, supports that these ultramafic xenoliths are derived from the upper mantle.

  • PDF

Sr, Nd and Pb isotopic investigations of ultramafic xenoliths and their host basalts from Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea: Implications for a large-scale difference in the source mantle beneath East Asia

  • Park, Seong-Hee;Kwon, Sung-Tack;Hee Sagong;Cheong, Chang-Sik
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.75-75
    • /
    • 2001
  • We report Sr, Nd and Pb isotope data of clinopyroxene separates from ultramafic xenoliths and their host basaltic rocks in Jeju Island, Baekryeong Island, Boeun and Ganseong, Korea. The isotopic data of the xenoliths and host basalts are distinctly different from those of Korean basement rocks. Except for two xenoliths from Ganseong, all samples in this study have isotopic ratios within the combined range of MORB-OIB data. All basaltic rocks have Nd-Sr-Pb isotope compositions different from those of xenoliths, indicating that the host basaltic magma did not derive from the lithospheric mantle where the xenoliths originated. The range of isotopic composition of xenoliths is much greater than that observed in host basalts, which reflects small-scale heterogeneity of the lithospheric mantle. The greater isotopic heterogeneity of the lithospheric mantle probably reflects its long-term stability. The spinel peridotite xenolith data of Jeju Island, Baekryeong Island and Boeun display mixing hyperbolas between DMM and EM II end members. Since Jeju basalts have EM II-like isotopic signature, the mixing relationship shown by the isotopic data of the Jeju xenoliths can be interpreted as the result of infiltration of metasomatic fluid or melt derived from basaltic magma into DMM-like lithospheric mantle. In contrast to other xenolith sites, the Ganseong xenoliths are dominantly clinopyroxene megacryst and pyroxenite. Clinopyroxene megacrysts have different isotopic ratios from their host basalt, reflecting its exotic origin. Two Ganseong xenoliths (wherlite and clinopyroxenite) have much enriched Sr and Nd isotopic ratios and Nd model ages of 2.5-2.9 Ga, and plot in an array away from the MORB-OIB field. The mantle xenoliths from Korean Peninsula have similar $\^$87/Sr/$\^$86/Sr,$\^$143/Nd/$\^$144/Nd and $\^$207/Pb/$\^$204/Pb ratios to, but higher $\^$208/Pb/$\^$204/Pb ratios than, those from eastern China, indicating that Korean xenoliths are derived from the lithospheric mantle with higher Th/U ratio compared with Chinese ones. The isotopic data of xenolith-bearing basalts of Baekryeong Island and Ganseong, along with Ulreung and Dok Islands, show a mixing trend betlveen DMM and EM I in Sr-Nd-Pb isotopic correlation diagrams, which is also observed in tile northeastern Chinese basalts. However, the Jeju volcanic rocks show an EM II signature that is observed in southeastern Chinese basalts. The isotopic variations in volcanic rocks from the northern and southern portions of the East Asia reflect a large-scale isotopic heterogeneity in their source mantle.

  • PDF

Petrological Study on the Mantle Xenolith from Songaksan, Jeju Island (제주도 송악산에 분포하는 맨틀포획암의 암석학적 연구)

  • Youngwoo Kil
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.365-376
    • /
    • 2023
  • Songaksan, formed about 3800 year ago, is one of the tuff rings in the Jeju Island. Mantle xenoliths, spinel peridotites, are enclosed in the Songaksan Trachybasalt. The spinel peridotites are less than 2 cm in size and are composed of olivine, orthopyroxene, clinopyroxene, and spinel. The uniform compositions of the minerals from core to rim indicate that equilibrium was reached in the spinel peridotites before these were enclosed in the host magma. The spinel peridotites originated at depths between 55 and 60 km with equilibrium temperatures ranging from 915 to 968℃. The spinel peridotites from Songaksan reveal porphyroclastic texture with a lot of neoblast minerals. Olivines display strong kink banding, indicating that the upper mantle of Songaksan has been deformed. The spinel peridotites from Songaksan have undergone about 5~7% fractional melting, and cryptic metasomatism by an silicate melt. The period of entrainment and transport of the spinel peridotites in the host magma is about 15 days.

Nd, Sr and Noble Gas Isotopic Compositions of Alkali Basaltic Rocks and Mantle Xenoliths in the Baegryongdo (백령도에 분포하는 알칼리 현무암과 맨틀 포획암의 Nd-Sr과 영족기체 동위원소 조성)

  • ;Nagao Keisuke;;Sumino Hirochika
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.523-532
    • /
    • 2002
  • The rare earth elements (REE) and Nd, Sr and noble gas isotopic compositions eHer'He, 4$^{\circ}$Arp6Ar) for the Quaternary alkali basaltic rocks and mantle xenoliths in the basaltic rocks from the Baegryongdo were investigated to decipher the origin of alkali basaltic magma and xenolith beneath the Sino-Korean craton. Analytical results are summarized as follows; (1) The alkali volcanic rocks with voluminous xenoliths which are represented by the Mg-olivine and clinopyroxene dominant spinel-lherzolite in the Baegryongdo consist mainly of the basalt-mugearite and basaltic andesite. (2) The REE pattern of alkali basaltic rocks characterized by high HREE is similar to that of oceanic island basalt (OlB). Relatively concordant REE patterns of the basaltic rocks suggest that the alkali basaltic magma be formed by the identical source materials. (3) The Nd-Sr isotopic data of the alkali basaltic rocks suggest that the alkali basaltic magma be originated from the depleted mantle source with a little contamination of the continental crustal materials. (4) The $^3$He/ $^4$He ratios in olivines of xenoliths ranging from 5.0${\pm}$1.lRa to 6.7${\pm}$1.3Ra are lower than that of MORB (ca. 8.0Ra). It suggest that the xenolith be derived from the subcontinental lithospheric mantle. However, the high $^3$Her'He value of 16.8${\pm}$3.IRa at 1800$^{\circ}$C fraction (sample no OL-7) might be resulted from the post-eruptive cosmogenic $^3$He. The 4OAr/ 36 Ar ratios in olivines of mantle xenoliths are comparable to that of atmospheric argon, and are much lower than that of the MORB type mantle. These facts can lead to conclusion that the olivine of the xenolith in the Baegryongdo is affected by the post-eruptive atmospheric contamination during the slow degassing process.

Petrological Study on the Mantle Xenolith from Dongsuak Crater, Jeju Island (제주도 동수악 분화구에서 산출되는 맨틀포획암의 암석학적 연구)

  • Kil, Youngwoo;Hong, Sei Sun;Lee, Choon Oh;Ahn, Ung San
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2022
  • Dongsuak crater, located in the mid-mountainous region of Jeju Island, is located at an altitude of about 700 m, and the newly discovered Dongsuak spinel peridotites was enclosed in Dongsuak alkaline basalt. The Dongsuak spinel peridotites are composed of olivine, orthopyroxene, clinopyroxene, and spinel with porphyroclastic texture under the an equilibrium state. The variations of mineral major and trace compositions indicates that the Dongsuak spinel peridotites originate at depth from 66 to 88 km under an equilibrium temperature of about 960℃~1068℃. The Dongsuak spinel peridotites have been undergone about 1~3% fractional melting. The LREE-enriched characteristics indicate that the Dongsuak spinel peridotites have been undergone cryptic metasomatism by silicate melt without new minerals.

A geothermal gradient of the upper mantle beneath Jeju-do, Korea: evidence from mantle xenoliths

  • Choi, Seong-Hee;Jwa, Yong-Joo;Lee, Han-Yeang
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2000.05a
    • /
    • pp.19-19
    • /
    • 2000
  • ;Ultramafic xenoliths found in alkali basalts from Jeju-do, Korea are mostly spinel Iherzolites composed of olivine, orthopyroxene, clinopyroxene and spinel. A subordinate amount of spinel harzburgites and pyroxenites are also found. Temperatures for these xenoliths were estimated from the compositions of coexisting pyroxenes (Wood '||'&'||' Banno 1973; Wells 1977; Bertrand '||'&'||' Mercier 1985; Brey '||'&'||' Kohler 1990), the AI-solubility in orthopyroxene coexisting with olivine and spinel (Sachtleben '||'&'||' Seck 1981; Webb '||'&'||' Wood 1986), and from Fe/Mg partitioning between olivine and spinel (Ballhaus et al. 1991). Temperature estimates from the thermometers by Wells (1977) and Brey and Kohler (1990) are compatible. Average equilibrium temperatures by these two methods for spinel peridotites range from 890 to 1030$^{\circ}$C. Pressures for spinel peridotites were estimated from the geobarometer by Kohler and Brey (1991) derived from the equilibrium Ca content of olivine coexisting with clinopyroxene, and fall within the range of 12.9 to 26.3 kbar. The combination of the thermometer by Brey and Kohler (1990) and the geobarometer by Kohler and Brey (1991) yields P- T estimates for Jeju-do spinel peridotites that fall in experimentally determined spinel lherzolite field in CFMASCr system (O'Neill 1981). These P-T data sets have been used to construct the Quaternary Jeju-do geotherm, which is significantly different from the conventional conductive geotherm. The xenolith-derived geotherm has a higher T gradient at low P (13 kbar) than at high P, which may be due to perturbation of the conductive heat flow by magma underplating or overplating at the crust-mantle boundary. Temperature estimates and statistics on the xenoliths indicate that the crust/mantle boundary in Jeju-do lies at about 11 kbar (~39 km). Spinellherzolite is inferred as a main constituent rock of the uppermost lithospheric mantle beneath Jeju-do. Pyroxenites were intercalated in peridotites in similar depth and temperature as re-equilibrated veins or lens.

  • PDF

Sr, Nd and Pb Isotopic Compositions of the Pyeongtaek-Asan Alkali Basalts: Implication to the Contrasting Compositional Boundary for the Mantle beneath Korean Peninsula (평택-아산 알칼리 현무암의 Sr, Nd 및 Pb 동위원소 조성: 한반도 아래 맨틀의 대조적인 조성 경계에 대한 의미)

  • Park, Kye-Hun;Cheong, Chang-Sik;Jeong, Youn-Joong
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.144-153
    • /
    • 2008
  • Sr, Nd, Pb isotopic compositions of the Cenozoic basaltic rocks distributed in Pyeongtaek-Asan area display significantly enriched values compared with mid-ocean ridge basalts just like other Cenozoic basalts of Korea. The isotopic compositions of most of the Cenozoic basaltic rocks of Korea including those from Pyeongtaek-Asan area can be explained as mixing between enriched mantle component with relatively low $^{206}Pb/^{204}Pb$ ratios and depleted mantle component. In contrast, Jejudo basalts can be explained as mixing between enriched mantle component with realtively higher $^{206}Pb/^{204}Pb$ ratios and depleted mantle componsnt. Combined with that very similar division of enriched mantle components is applied to the Cenozoic basalts of northeast China and southeast China, it is suggested that subcontinental lithospheric mantle of central and southern parts of Korea represents eastern extension of North China Block and South China Block respectively. The indentation model for the late Paleozoic to early Mesozoic continental collision of China contradicts to such an interpretation, because it cannot explain occurrence of subcontinental lithospheric mantle component of South China Block-affinity under the Jejudo area. Instead, it is more probable that suture zone of the two continental blocks crosses between central and southern Korea and its location is further south from the Pyeongtaek-Asan area. Such distinct location compared with Imjingal belt, supposedly collisional boundary suggested before, suggests that mantle boundary may not be coincide with crustal boundary for the continental collision.

Geochemical Characteristics of Mineral Phases in the Mantle Xenoliths from Sunheul-ri, Jeju Island (제주도 선흘리 일대에 분포하는 맨틀포획암 내의 광물의 지화학적 특성 연구)

  • Kil, Young-Woo;Shin, Hong-Ja;Yun, Sung-Hyo;Koh, Jeong-Seon;Ahn, Ung-San
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.373-382
    • /
    • 2008
  • First reported geochemical characteristics of mantle xneoliths (spinel peridotites) from Sunheul-ri, Jeju Island, provide important clues for understanding the lithosphere composition, equilibrium temperature, and the period of entrainment and transport of the xenoliths in the host magma. Core and rim of mineral phases in the xenoliths are constant chemical compositions as $Fo_{89-90}$ of olivines. The ranges of equilibrium temperature, obtained by two pyroxenes geothermometer, are about $951{\sim}1035^{\circ}C$ for Sunheul-ri spinel peridotite xenoliths and are similar to the range of equilibrium temperatures for the xenoliths from other sites in Jeju island. The period of entrainment and transport of the xenoliths in the host magma of Sunheul-ri mantle xenoliths is about 42 days.

Evolution of the Subcontinental Lithospheric Mantle of Korean Peninsula: Partial Loss and its Timing (한반도 대륙암권맨틀의 진화: 부분적 손실과 그 시기)

  • Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.199-208
    • /
    • 2010
  • The Cenozoic alkali basalts are distributed over Korea, both on central part as Bangnyeongdo, Ganseong, Pyeongtaek-Asan and Jogongni and also on southernmost part Jejudo. The ultramafic mantle xenoliths carried by Korean alkali basalts are spinel lherzolites. Garnet lherzolite that is more stable at the deeper level has not been reported so far, indicating that the lithospheric thickness under Korea does not reach deep enough to the stable zone of garnet lherzolite. The crustal evolution history of the Korean peninsula, at least some part of it, seemingly started since the Archean, it normally should have lithospheric thickness greater than 150 km. However, the mantle xenoliths carried by the Cenozoic alkali basalts indicate the maximum depth of origination in the much shallower range of 60-90 km. Such significantly thinner lithospheric thickness of the Korean peninsula than expected is quite similar to the case of North China Craton having lithospheric thickness of ca. 80 km in average, suggesting thinning of the lithospheric mantle in a depth scale of a few tens of kilometers during the past geologic time. The main causal events for such significant thinning of the lithospheric mantle can be continental collisional events of Paleoproterozoic and early Mesozoic similar to the case of North China Craton, which are also supported by Paleoproterozoic igneous and metamorphic events during the 1.9-2.0 Ga occurring all over the Korean peninsula and also early Mesozoic continental collisional event which has been discussed on lively arguments.