• 제목/요약/키워드: Bandwidth Efficiency

검색결과 795건 처리시간 0.027초

공통 모드 노이즈를 흡수하는 소형 공통 모드 필터 설계 (Design of Compact Common Mode Noise Absorption Filter)

  • 정현종;정진우;임영석
    • 한국전자파학회논문지
    • /
    • 제29권12호
    • /
    • pp.963-968
    • /
    • 2018
  • 본 논문에서는 수동소자를 이용한 소형 공통 모드 필터를 설계 및 제작하였다. 주어진 주파수 응답을 갖는 공통 모드 필터를 설계하기 위해 차동 모드와 공통 모드에서 등가회로를 분석하였다. 제안된 구조는 기존의 ${\lambda}/4$ 공진기로 구현된 필터에 비해 60 %의 크기가 감소하였다. 또한, 제작된 공통 모드 필터는 ${\mid}S_{dd11}{\mid}$, ${\mid}S_{cc21}{\mid}$, ${\mid}S_{cc11}{\mid}$ < -10 dB를 만족하는 27.5 %의 공통 모드 흡수 대역폭에서 최대 1.2 dB의 차동 모드 삽입손실과 최소 78.2 %의 공통 모드 흡수 효율을 갖는다.

A 20 W GaN-based Power Amplifier MMIC for X-band Radar Applications

  • Lee, Bok-Hyung;Park, Byung-Jun;Choi, Sun-Youl;Lim, Byeong-Ok;Go, Joo-Seoc;Kim, Sung-Chan
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.181-187
    • /
    • 2019
  • In this paper, we demonstrated a power amplifier monolithic microwave integrated circuit (MMIC) for X-band radar applications. It utilizes commercial $0.25{\mu}m$ GaN-based high electron mobility transistor (HEMT) technology and delivers more than 20 W of output power. The developed GaN-based power amplifier MMIC has small signal gain of over 22 dB and saturated output power of over 43.3 dBm (21.38 W) in a pulse operation mode with pulse width of $200{\mu}s$ and duty cycle of 4% over the entire band of 9 to 10 GHz. The chip dimensions are $3.5mm{\times}2.3mm$, generating the output power density of $2.71W/mm^2$. Its power added efficiency (PAE) is 42.6-50.7% in the frequency bandwidth from 9 to 10 GHz. The developed GaN-based power amplifier MMIC is expected to be applied in a variety of X-band radar applications.

A Pattern Matching Extended Compression Algorithm for DNA Sequences

  • Murugan., A;Punitha., K
    • International Journal of Computer Science & Network Security
    • /
    • 제21권8호
    • /
    • pp.196-202
    • /
    • 2021
  • DNA sequencing provides fundamental data in genomics, bioinformatics, biology and many other research areas. With the emergent evolution in DNA sequencing technology, a massive amount of genomic data is produced every day, mainly DNA sequences, craving for more storage and bandwidth. Unfortunately, managing, analyzing and specifically storing these large amounts of data become a major scientific challenge for bioinformatics. Those large volumes of data also require a fast transmission, effective storage, superior functionality and provision of quick access to any record. Data storage costs have a considerable proportion of total cost in the formation and analysis of DNA sequences. In particular, there is a need of highly control of disk storage capacity of DNA sequences but the standard compression techniques unsuccessful to compress these sequences. Several specialized techniques were introduced for this purpose. Therefore, to overcome all these above challenges, lossless compression techniques have become necessary. In this paper, it is described a new DNA compression mechanism of pattern matching extended Compression algorithm that read the input sequence as segments and find the matching pattern and store it in a permanent or temporary table based on number of bases. The remaining unmatched sequence is been converted into the binary form and then it is been grouped into binary bits i.e. of seven bits and gain these bits are been converted into an ASCII form. Finally, the proposed algorithm dynamically calculates the compression ratio. Thus the results show that pattern matching extended Compression algorithm outperforms cutting-edge compressors and proves its efficiency in terms of compression ratio regardless of the file size of the data.

샤논 정보이론의 상관성 동기에 관한 연구 (A Study on the Relative Motivation of Shannon's Information Theory)

  • 이문호;김정수
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.51-57
    • /
    • 2021
  • 본 논문에서는 샤논 정리(1948)의 동기가 되는 아인슈타인 특수상대성이론(1905)과 베르누이 유체역학(1738)의 상관성을 AB=A/A=I Dimension 관점에서 유도했고 샤논 정리 채널코드를 시뮬레이션했다. 베르누이 유체역학 ΔP=pgh를 한라산 화산 Magma 폭발식으로 적용했을 때 Dimension과 높이가 실측치와 일치했다. 아인슈타인 특수상대성이론과 샤논의 정보이론, 그리고 유체역학의 연돌효과(Stack Effect) 이론의 관계를 분석해 보고 화산 폭발의 관계를 수학적으로 증명했다. 아인슈타인, 베르누이의 에너지보존과 질량보존은 샤논 정리에서는 대역폭과 power의 효율면과 같았다.

Coordinated Millimeter Wave Beam Selection Using Fingerprint for Cellular-Connected Unmanned Aerial Vehicle

  • Moon, Sangmi;Kim, Hyeonsung;You, Young-Hwan;Kim, Cheol Hong;Hwang, Intae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1929-1943
    • /
    • 2021
  • Millimeter wave (mmWave) communication based on the wide bandwidth of >28 GHz is one of the key technologies for cellular-connected unmanned aerial vehicles (UAVs). The selection of mmWave beams in such cellular-connected UAVs is challenging and critical, especially when downlink transmissions toward aerial user equipment (UE) suffer from poor signal-to-interference-plus-noise ratio (SINR) more often than their terrestrial counterparts. This study proposed a coordinated mmWave beam selection scheme using fingerprint for cellular-connected UAV. The scheme comprises fingerprint database configuration and coordinated beam selection. In the fingerprint database configuration, the best beam index from the serving cell and interference beam indexes from neighboring cells are stored. In the coordinated beam selection, the best and interference beams are determined using the fingerprint database information instead of performing an exhaustive search, and the coordinated beam transmission improves the SINR for aerial UEs. System-level simulations assess the UAV effect based on the third-generation partnership project-new radio mmWave and UAV channel models. Simulation results show that the proposed scheme can reduce the overhead of exhaustive search and improve the SINR and spectral efficiency.

Image Deduplication Based on Hashing and Clustering in Cloud Storage

  • Chen, Lu;Xiang, Feng;Sun, Zhixin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1448-1463
    • /
    • 2021
  • With the continuous development of cloud storage, plenty of redundant data exists in cloud storage, especially multimedia data such as images and videos. Data deduplication is a data reduction technology that significantly reduces storage requirements and increases bandwidth efficiency. To ensure data security, users typically encrypt data before uploading it. However, there is a contradiction between data encryption and deduplication. Existing deduplication methods for regular files cannot be applied to image deduplication because images need to be detected based on visual content. In this paper, we propose a secure image deduplication scheme based on hashing and clustering, which combines a novel perceptual hash algorithm based on Local Binary Pattern. In this scheme, the hash value of the image is used as the fingerprint to perform deduplication, and the image is transmitted in an encrypted form. Images are clustered to reduce the time complexity of deduplication. The proposed scheme can ensure the security of images and improve deduplication accuracy. The comparison with other image deduplication schemes demonstrates that our scheme has somewhat better performance.

A Certificateless-based One-Round Authenticated Group Key Agreement Protocol to Prevent Impersonation Attacks

  • Ren, Huimin;Kim, Suhyun;Seo, Daehee;Lee, Imyeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권5호
    • /
    • pp.1687-1707
    • /
    • 2022
  • With the development of multiuser online meetings, more group-oriented technologies and applications for instance collaborative work are becoming increasingly important. Authenticated Group Key Agreement (AGKA) schemes provide a shared group key for users with after their identities are confirmed to guarantee the confidentiality and integrity of group communications. On the basis of the Public Key Cryptography (PKC) system used, AGKA can be classified as Public Key Infrastructure-based, Identity-based, and Certificateless. Because the latter type can solve the certificate management overhead and the key escrow problems of the first two types, Certificateless-AGKA (CL-AGKA) protocols have become a popular area of research. However, most CL-AGKA protocols are vulnerable to Public Key Replacement Attacks (PKRA) due to the lack of public key authentication. In the present work, we present a CL-AGKA scheme that can resist PKRA in order to solve impersonation attacks caused by those attacks. Beyond security, improving scheme efficiency is another direction for AGKA research. To reduce the communication and computation cost, we present a scheme with only one round of information interaction and construct a CL-AGKA scheme replacing the bilinear pairing with elliptic curve cryptography. Therefore, our scheme has good applicability to communication environments with limited bandwidth and computing capabilities.

연삭가공에 있어 비가공 시간 단축에 관한 연구(I) -음향센서를 이용한 공연삭 시간의 단축- (Reducing the Non Grinding Time in Grinding Operations(1st Report) -Reducing the Air Grinding time using Sound Sensor-)

  • 김선호;안중환
    • 한국정밀공학회지
    • /
    • 제14권5호
    • /
    • pp.85-91
    • /
    • 1997
  • Air grinding time in grinding process has a great effect on its efficiency due to low feedrate. This paper presents a reduction methos of air grinding time in cylindrical plunge grinding operation. Tje reduction of air grinding time is accomplished by finding the distance between contact point and rising point of ultra- sonic signal of the grinding wheel to workpiece. It uses a variation of sound signal generated by the flow of coolant when the grinding wheel approaches to workpiece. The ultrasonic sensor with 23 kHz center fre- quency and 8 kHz bandwidth is used to find the nearest approaching point(NAP). Monitoring and control system of the grinding conditions is implemented with CNC controller to control feedrate override and ultrasonic sensor to find NAP. The experimental result shows that the ultrasonic signal is a good measure- ment to find NAP. But it needs the considerations for the effect of the relationship between flowrate of coolant and diameter of workpiece.

  • PDF

Propagating and evanescent waves in a functionally graded nanoplate based on nonlocal theory

  • Cancan Liu;Jiangong Yu;Bo Zhang;Xiaoming Zhang;Xianhui Wang
    • Advances in nano research
    • /
    • 제14권5호
    • /
    • pp.463-474
    • /
    • 2023
  • The purpose of this paper is to present the analysis of propagating and evanescent waves in functionally graded (FG) nanoplates with the consideration of nonlocal effect. The analytical integration nonlocal stress expansion Legendre polynomial method is proposed to obtain complete dispersion curves in the complex domain. Unlike the traditional Legendre polynomial method that expanded the displacement, the presented polynomial method avoids employing the relationship between local stress and nonlocal stress to construct boundary conditions. In addition, the analytical expressions of numerical integrations are presented to improve the computational efficiency. The nonlocal effect, inhomogeneity of medium and their interactions on wave propagation are studied. It is found that the nonlocal effect and inhomogeneity of medium reduce the frequency bandwidth of complex evanescent Lamb waves, and make complex evanescent Lamb waves have a higher phase velocity at low attenuation. The occurrence of intersections of propagating Lamb wave in the nonlocal homogeneous plate needs to satisfy a smaller Poisson's ratio condition than that in the classical elastic theory. In addition, the inhomogeneity of medium enhances the nonlocal effect. The conclusions obtained can be applied to the design and dynamic response evaluation of composite nanostructures.

공통-모드 간섭 (CMI)에 강인한 2-전극 기반 심전도 계측 회로 (CMI Tolerant Readout IC for Two-Electrode ECG Recording)

  • 강상균;남경식;고형호
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.432-440
    • /
    • 2023
  • This study introduces an efficient readout circuit designed for two-electrode electrocardiogram (ECG) recording, characterized by its low-noise and low-power consumption attributes. Unlike its three-electrode counterpart, the two-electrode ECG is susceptible to common-mode interference (CMI), causing signal distortion. To counter this, the proposed circuit integrates a common-mode charge pump (CMCP) with a window comparator, allowing for a CMI tolerance of up to 20 VPP. The CMCP design prevents the activation of electrostatic discharge (ESD) diodes and becomes operational only when CMI surpasses the predetermined range set by the window comparator. This ensures power efficiency and minimizes intermodulation distortion (IMD) arising from switching noise. To maintain ECG signal accuracy, the circuit employs a chopper-stabilized instrumentation amplifier (IA) for low-noise attributes, and to achieve high input impedance, it incorporates a floating high-pass filter (HPF) and a current-feedback instrumentation amplifier (CFIA). This comprehensive design integrates various components, including a QRS peak detector and serial peripheral interface (SPI), into a single 0.18-㎛ CMOS chip occupying 0.54 mm2. Experimental evaluations showed a 0.59 µVRMS noise level within a 1-100 Hz bandwidth and a power draw of 23.83 µW at 1.8 V.