• Title/Summary/Keyword: Banach Algebra

Search Result 263, Processing Time 0.023 seconds

TRANSLATION THEOREMS FOR THE ANALYTIC FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PATHS ON WIENER SPACE

  • Chang, Seung Jun;Choi, Jae Gil
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.147-160
    • /
    • 2018
  • In this article, we establish translation theorems for the analytic Fourier-Feynman transform of functionals in non-stationary Gaussian processes on Wiener space. We then proceed to show that these general translation theorems can be applied to two well-known classes of functionals; namely, the Banach algebra S introduced by Cameron and Storvick, and the space ${\mathcal{B}}^{(P)}_{\mathcal{A}}$ consisting of functionals of the form $F(x)=f({\langle}{\alpha}_1,x{\rangle},{\ldots},{\langle}{\alpha}_n,x{\rangle})$, where ${\langle}{\alpha},x{\rangle}$ denotes the Paley-Wiener-Zygmund stochastic integral ${\int_{0}^{T}}{\alpha}(t)dx(t)$.

QUADRATIC FUNCTIONAL EQUATIONS ASSOCIATED WITH BOREL FUNCTIONS AND MODULE ACTIONS

  • Park, Won-Gil;Bae, Jae-Hyeong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.499-510
    • /
    • 2009
  • For a Borel function ${\psi}:\mathbb{R}{\times}\mathbb{R}{\rightarrow}\mathbb{R}$ satisfying the functional equation $\psi$ (s + t, u + v) + $\psi$(s - t, u - v) = $2\psi$(s, u) + $2\psi$(t, v), we show that it satisfies the functional equation $$\psi$$(s, t) = s(s - t)$$\psi$$(1, 0) + $$st\psi$$(1, 1) + t(t - s)$$\psi$$(0, 1). Using this, we prove the stability of the functional equation f(ax + ay, bz + bw) + f(ax - ay, bz - bw) = 2abf(x, z) + 2abf(y,w) in Banach modules over a unital $C^*$-algebra.

CHANGE OF SCALE FORMULAS FOR CONDITIONAL WIENER INTEGRALS AS INTEGRAL TRANSFORMS OVER WIENER PATHS IN ABSTRACT WIENER SPACE

  • Cho, Dong-Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.91-109
    • /
    • 2007
  • In this paper, we derive a change of scale formula for conditional Wiener integrals, as integral transforms, of possibly unbounded functions over Wiener paths in abstract Wiener space. In fact, we derive the change of scale formula for the product of the functions in a Banach algebra which is equivalent to both the Fresnel class and the space of measures of bounded variation over a real separable Hilbert space, and the $L_p-type$cylinder functions over Wiener paths in abstract Wiener space. As an application of the result, we obtain a change of scale formula for the conditional analytic Fourier-Feynman transform of the product of the functions.

FOURIER-FEYNMAN TRANSFORMS FOR FUNCTIONALS IN A GENERALIZED FRESNEL CLASS

  • Yoo, Il;Kim, Byoung-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.75-90
    • /
    • 2007
  • Huffman, Park and Skoug introduced various results for the $L_p$ analytic Fourier-Feynman transform and the convolution for functionals on classical Wiener space which belong to some Banach algebra S introduced by Cameron and Strovic. Also Chang, Kim and Yoo extended the above results to an abstract Wiener space for functionals in the Fresnel class F(B) which corresponds to S. Recently Kim, Song and Yoo investigated more generalized relationships between the Fourier-Feynman transform and the convolution product for functionals in a generalized Fresnel class $F_{A_1,A'_2}$ containing F(B). In this paper, we establish various interesting relationships and expressions involving the first variation and one or two of the concepts of the Fourier-Feynman transform and the convolution product for functionals in $F_{A_1,A_2}$.

ON n-TUPLES OF TENSOR PRODUCTS OF p-HYPONORMAL OPERATORS

  • Duggal, B.P.;Jeon, In-Ho
    • The Pure and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.287-292
    • /
    • 2004
  • The operator $A \; {\in} \; L(H_{i})$, the Banach algebra of bounded linear operators on the complex infinite dimensional Hilbert space $\cal H_{i}$, is said to be p-hyponormal if $(A^\ast A)^P \geq (AA^\ast)^p$ for $p\; \in \; (0,1]$. Let (equation omitted) denote the completion of (equation omitted) with respect to some crossnorm. Let $I_{i}$ be the identity operator on $H_{i}$. Letting (equation omitted), where each $A_{i}$ is p-hyponormal, it is proved that the commuting n-tuple T = ($T_1$,..., $T_{n}$) satisfies Bishop's condition ($\beta$) and that if T is Weyl then there exists a non-singular commuting n-tuple S such that T = S + F for some n-tuple F of compact operators.

  • PDF

RELATIONSHIPS BETWEEN INTEGRAL TRANSFORMS AND CONVOLUTIONS ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • Honam Mathematical Journal
    • /
    • v.35 no.1
    • /
    • pp.51-71
    • /
    • 2013
  • In the present paper, we evaluate the analytic conditional Fourier-Feynman transforms and convolution products of unbounded function which is the product of the cylinder function and the function in a Banach algebra which is defined on an analogue o Wiener space and useful in the Feynman integration theories and quantum mechanics. We then investigate the inverse transforms of the function with their relationships and finally prove that th analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions, can be expressed in terms of the product of the conditional Fourier-Feynman transforms of each function.

ANALYTIC FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION OF FUNCTIONALS IN A GENERALIZED FRESNEL CLASS

  • Kim, Byoung Soo;Song, Teuk Seob;Yoo, Il
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.481-495
    • /
    • 2009
  • Huffman, Park and Skoug introduced various results for the $L_{p}$ analytic Fourier-Feynman transform and the convolution for functionals on classical Wiener space which belong to some Banach algebra $\mathcal{S}$ introduced by Cameron and Storvick. Also Chang, Kim and Yoo extended the above results to an abstract Wiener space for functionals in the Fresnel class $\mathcal{F}(B)$ which corresponds to $\mathcal{S}$. Moreover they introduced the $L_{p}$ analytic Fourier-Feynman transform for functionals on a product abstract Wiener space and then established the above results for functionals in the generalized Fresnel class $\mathcal{F}_{A1,A2}$ containing $\mathcal{F}(B)$. In this paper, we investigate more generalized relationships, between the Fourier-Feynman transform and the convolution product for functionals in $\mathcal{F}_{A1,A2}$, than the above results.

  • PDF

CHANGE OF SCALE FORMULAS FOR FUNCTION SPACE INTEGRALS RELATED WITH FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION ON Ca,b[0, T]

  • Kim, Bong Jin;Kim, Byoung Soo;Yoo, Il
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.47-64
    • /
    • 2015
  • We express generalized Fourier-Feynman transform and convolution product of functionals in a Banach algebra $\mathcal{S}(L^2_{a,b}[0,T])$ as limits of function space integrals on $C_{a,b}[0,T]$. Moreover we obtain change of scale formulas for function space integrals related with generalized Fourier-Feynman transform and convolution product of these functionals.

STABILITY OF DERIVATIONS ON PROPER LIE CQ*-ALGEBRAS

  • Najati, Abbas;Eskandani, G. Zamani
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.5-16
    • /
    • 2009
  • In this paper, we obtain the general solution and the generalized Hyers-Ulam-Rassias stability for a following functional equation $$\sum\limits_{i=1}^mf(x_i+\frac{1}{m}\sum\limits_{{i=1\atop j{\neq}i}\.}^mx_j)+f(\frac{1}{m}\sum\limits_{i=1}^mx_i)=2f(\sum\limits_{i=1}^mx_i)$$ for a fixed positive integer m with $m\;{\geq}\;2$. This is applied to investigate derivations and their stability on proper Lie $CQ^*$-algebras. The concept of Hyers-Ulam-Rassias stability originated from the Th. M. Rassias stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.

HYERS-ULAM STABILITY OF MAPPINGS FROM A RING A INTO AN A-BIMODULE

  • Oubbi, Lahbib
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.767-782
    • /
    • 2013
  • We deal with the Hyers-Ulam stability problem of linear mappings from a vector space into a Banach one with respect to the following functional equation: $$f\(\frac{-x+y}{3}\)+f\(\frac{x-3z}{3}\)+f\(\frac{3x-y+3z}{3}\)=f(x)$$. We then combine this equation with other ones and establish the Hyers-Ulam stability of several kinds of linear mappings, among which the algebra (*-) homomorphisms, the derivations, the multipliers and others. We thus repair and improve some previous assertions in the literature.