DOI QR코드

DOI QR Code

QUADRATIC FUNCTIONAL EQUATIONS ASSOCIATED WITH BOREL FUNCTIONS AND MODULE ACTIONS

  • Published : 2009.05.31

Abstract

For a Borel function ${\psi}:\mathbb{R}{\times}\mathbb{R}{\rightarrow}\mathbb{R}$ satisfying the functional equation $\psi$ (s + t, u + v) + $\psi$(s - t, u - v) = $2\psi$(s, u) + $2\psi$(t, v), we show that it satisfies the functional equation $$\psi$$(s, t) = s(s - t)$$\psi$$(1, 0) + $$st\psi$$(1, 1) + t(t - s)$$\psi$$(0, 1). Using this, we prove the stability of the functional equation f(ax + ay, bz + bw) + f(ax - ay, bz - bw) = 2abf(x, z) + 2abf(y,w) in Banach modules over a unital $C^*$-algebra.

Keywords

References

  1. J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, Cambridge, New York, New Rochelle, 1989
  2. J.-H. Bae and W.-G. Park, A functional equation originating from quadratic forms, J. Math. Anal. Appl. 326 (2007), no. 2, 1142–1148 https://doi.org/10.1016/j.jmaa.2006.03.023
  3. V. I. Bogachev, Measure Theory, Vol.II, Springer-Verlag, Berlin, Heidelberg, New York, 2007
  4. F. Bonsall and J. Duncan, Complex Normed Algebras, Springer-Verlag, Berlin, Heidelberg, New York, 1973
  5. K. Davidson, $C^*$-Algebras by Example, American Mathematical Society, Providence, Rhode Island, 1996
  6. R. Kadison and G. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), no. 2, 249–266
  7. S. Kurepa, On the quadratic functional, Acad. Serbe Sci. Publ. Inst. Math. 13 (1961), 57–72

Cited by

  1. APPROXIMATE BI-HOMOMORPHISMS AND BI-DERIVATIONS IN C*-TERNARY ALGEBRAS vol.47, pp.1, 2010, https://doi.org/10.4134/BKMS.2010.47.1.195
  2. CHARACTERIZATIONS OF REAL HYPERSURFACES OF TYPE A IN A COMPLEX SPACE FORM vol.47, pp.1, 2010, https://doi.org/10.4134/BKMS.2010.47.1.001