• 제목/요약/키워드: Banach Algebra

검색결과 263건 처리시간 0.022초

DERIVATIONS ON CONVOLUTION ALGEBRAS

  • MEHDIPOUR, MOHAMMAD JAVAD;SAEEDI, ZAHRA
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1123-1132
    • /
    • 2015
  • In this paper, we investigate derivations on the noncommutative Banach algebra $L^{\infty}_0({\omega})^*$ equipped with an Arens product. As a main result, we prove the Singer-Wermer conjecture for the noncommutative Banach algebra $L^{\infty}_0({\omega})^*$. We then show that a derivation on $L^{\infty}_0({\omega})^*$ is continuous if and only if its restriction to rad($L^{\infty}_0({\omega})^*$) is continuous. We also prove that there is no nonzero centralizing derivation on $L^{\infty}_0({\omega})^*$. Finally, we prove that the space of all inner derivations of $L^{\infty}_0({\omega})^*$ is continuously homomorphic to the space $L^{\infty}_0({\omega})^*/L^1({\omega})$.

MULTIPLE Lp ANALYTIC GENERALIZED FOURIER-FEYNMAN TRANSFORM ON THE BANACH ALGEBRA

  • Chang, Seung-Jun;Choi, Jae-Gil
    • 대한수학회논문집
    • /
    • 제19권1호
    • /
    • pp.93-111
    • /
    • 2004
  • In this paper, we use a generalized Brownian motion process to define a generalized Feynman integral and a generalized Fourier-Feynman transform. We also define the concepts of the multiple Lp analytic generalized Fourier-Feynman transform and the generalized convolution product of functional on function space $C_{a,\;b}[0,\;T]$. We then verify the existence of the multiple $L_{p}$ analytic generalized Fourier-Feynman transform for functional on function space that belong to a Banach algebra $S({L_{a,\;b}}^{2}[0, T])$. Finally we establish some relationships between the multiple $L_{p}$ analytic generalized Fourier-Feynman transform and the generalized convolution product for functionals in $S({L_{a,\;b}}^{2}[0, T])$.

A CHANGE OF SCALE FORMULA FOR WIENER INTEGRALS OF UNBOUNDED FUNCTIONS II

  • Yoo, Il;Song, Teuk-Seob;Kim, Byoung-Soo
    • 대한수학회논문집
    • /
    • 제21권1호
    • /
    • pp.117-133
    • /
    • 2006
  • Cameron and Storvick discovered change of scale formulas for Wiener integrals of bounded functions in a Banach algebra S of analytic Feynman integrable functions on classical Wiener space. Yoo and Skoug extended these results to abstract Wiener space for a generalized Fresnel class $F_{A1,A2}$ containing the Fresnel class F(B) which corresponds to the Banach algebra S on classical Wiener space. In this paper, we present a change of scale formula for Wiener integrals of various functions on $B^2$ which need not be bounded or continuous.

n-WEAK AMENABILITY AND STRONG DOUBLE LIMIT PROPERTY

  • MEDGHALCHI, A.R.;YAZDANPANAH, T.
    • 대한수학회보
    • /
    • 제42권2호
    • /
    • pp.359-367
    • /
    • 2005
  • Let A be a Banach algebra, we say that A has the strongly double limit property (SDLP) if for each bounded net $(a_\alpha)$ in A and each bounded net $(a^{\ast}\;_\beta)\;in\;A^{\ast},\;lim_\alpha\;lim_\beta=lim_\beta\;lim_\alpha$ whenever both iterated limits exist. In this paper among other results we show that if A has the SDLP and $A^{\ast\ast}$ is (n - 2)-weakly amenable, then A is n-weakly amenable. In particular, it is shown that if $A^{\ast\ast}$ is weakly amenable and A has the SDLP, then A is weakly amenable.

JORDAN DERIVATIONS MAPPING INTO THE JACOBSON RADICAL

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • 충청수학회지
    • /
    • 제14권1호
    • /
    • pp.21-28
    • /
    • 2001
  • In this paper we show that the following results remain valid for arbitrary Jordan derivations as well: Let d be a derivation of a complex Banach algebra A. If $d^2(x){\in}rad(A)$ for all $x{\in}A$, then we have $d(A){\subseteq}rad(A)$ ([5, p. 243]), and in a case when A is unital, $d(A){\subseteq}rad(A)$ if and only if sup{$r(z^{-1}d(z)){\mid}z{\in}A$ invertible} < ${\infty}$([3]), where rad(A) stands for the Jacobson radical of A, and r(${\cdot}$) for the spectral radius.

  • PDF

SOME REMARKS FOR KÜNNETH FORMULA ON BOUNDED COHOMOLOGY

  • Park, HeeSook
    • 호남수학학술지
    • /
    • 제37권1호
    • /
    • pp.7-27
    • /
    • 2015
  • Kuneth formula is to compute (co)-homology of $A{\otimes}B$ for known (co)-homology of the complexes A and B. In the ordinary case, this is done by using elementary homological methods in an abelian category. However, when we consider the bounded cochain complex with values in $\mathbb{R}$ and its structure as a real Banach space, the techniques of homological algebra for constructing K$\ddot{u}$nneth type formulas on it are not effective. The most notable facts are the image of a morphism of Banach spaces is not necessarily closed, and also the closed summand of a Banach space need not be a topological direct summand. The main goal of this paper is to construct the theory of K$\ddot{u}$nneth type formula on bounded cohomology with real coefficients in the suitable category of Banach spaces with some restricted conditions.

𝓐-Frequent Hypercyclicity in an Algebra of Operators

  • Ahn, Ka Kyung
    • 통합자연과학논문집
    • /
    • 제10권2호
    • /
    • pp.115-118
    • /
    • 2017
  • We study a notion of $\mathcal{A}$-frequent hypercyclicity of linear maps between the Banach algebras consisting of operators on a separable infinite dimensional Banach space. We prove a sufficient condition for a linear map to satisfy the $\mathcal{A}$-frequent hypercyclicity in the strong operator topology.

A NOTE OF LEFT DERIVATIONS ON BANACH ALGEBRAS

  • Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제4권2호
    • /
    • pp.555-561
    • /
    • 1997
  • In this paper we show that if A is a Banach algebra with radical R and D is a left derivation on A then $D(A){\subset}R$ if and only if $Q_RD^n$ is continuous for all $n{\geq}1$, where $Q_R$ is the canonical quotient map from A onto A/R.