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A CHANGE OF SCALE FORMULA FOR WIENER
INTEGRALS OF UNBOUNDED FUNCTIONS II

IL Yoo, TEUK SEOB SONG AND ByouNG Soo Kim

ABSTRACT. Cameron and Storvick discovered change of scale for-
mulas for Wiener integrals of bounded functions in a Banach alge-
bra S of analytic Feynman integrable functions on classical Wiener
space. Yoo and Skoug extended these results to abstract Wiener
space for a generalized Fresnel class F4,,4, containing the Fresnel
class F(B) which corresponds to the Banach algebra S on classical
Wiener space. In this paper, we present a change of scale formula
for Wiener integrals of various functions on B2 which need not be
bounded or continuous.

1. Introduction

It has long been known that Wiener measure and Wiener measur-
ability behave badly under the change of scale transformation [3] and
under translations [2]. Cameron and Storvick [6] expressed the ana-
lytic Feynman integral for a rather large class of functionals as a limit
of Wiener integrals. In doing so, they discovered nice change of scale
formulas for Wiener integrals of bounded functions in a Banach algebra
S of analytic Feynman integrable fucntions on classical Wiener space
(Co[0,1],my) [5]. In [23, 24, 25], Yoo, Yoon and Skoug extended these
results to classical Yeh-Wiener space and to an abstract Wiener space
(H, B,v). In particular, Yoo and Skoug [22] established a change of scale
formula for Wiener integrals of functions in the Fresnel class F(B) on
abstract Wiener space, which corresponds to Cameron and Storvick’s
Banach algebra S and then they [25] developed this formula for a more
generalized Fresnel class F4,, 4, than the Fresnel class F(B). Also, Yoo,
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Song, Kim and Chang [24] investigated a change of scale formula for
Wiener integrals of unbounded functions on abstract Wiener space.
Let Xy, n, be an R™*™2 valued random variable on B? such that

(1.1) Xy g (21, 22) = (X1n, (%1), Xojna (22))

where X .. (z;) = ((e,1,%5)", ..., (€jn;,x;)”) and {€;1,...,€jn;} is an
orthonormal set in H for j = 1,2, and (+,-)" is a stochastic inner product
which will be defined in Section 2.

In this paper, we establish a change of scale formula for Wiener inte-
grals of functions of the form

(1.2) F(.’L‘l, .'Ez) = G(xl,xz)\I’(thnz (:rl, l‘g))

for G € Fa, 4, and ¥ = 1) + ¢ where ¢p € L,(R™*™2), 1 < p < oo,
and ¢ is a Fourier transform of a measure of bounded variation over
R™*"2 Note that the functions of the form (1.2) need not be bounded
or continuous.

2. Definitions and preliminaries

Let H be a real separable infinite dimensional Hilbert space with

inner product (-,-) and norm || - ||. Let ||| - ]|| be a measurable norm
on H with respect to the Gaussian cylinder set measure ¢ on H. Let
B denote the completion of H with respect to ||| - |||. Let ¢ denote the

natural injection from H to B. The adjoint operator ¢* of ¢ is one-to-
one and maps B* continuously onto a dense subset of H* where B* and
H* are the topological dual of B and H respectively. By identifying H
with H* and B* with *B*, we have a triple B* ¢ H* = H C B and
(h,x) = (h,z) for all h in H and z in B* where (-,-) denotes the natural
dual pairing between B and B*. By a well-known result of Gross [15],
oo.~! has a unique countably additive extension v to the Borel o-algebra,
B(B) of B. The triple (H, B,v) is called an abstract Wiener space. For
more details, see [15, 18, 19, 20].
Let C denote the set of complex numbers, and let

Q=1{Z=(21,22) €C?: Rez,>0for k=1,2}
and

Q={Z=(21,2) € C?: 2, #0, Re 2, > 0 for k =1,2}.
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DEFINITION 2.1. Let F be a functional on B? such that the integral
21)  Je(e,z) = / (M, 2 ) d(y x ) (a1, 22)
B

exists for all real numbers 2; > 0 and 23 > 0. If there exists an analytic
function J3 (21, 22) on Q such that Ji(z1, 22) = Jr(z1, 22) for all 23,29 >
0, then we call J%(z1, z2) the analytic Wiener integral of F over B? with
parameter Z = (21, 22), and for Z = (21, 29) € Q, we write

(2.2) IZ|F) = Ji(z1, 22).

Let ¢ and g2 be non-zero real numbers. If the following limit (2.3)
exists, we define it to be the analytic Feynman integral of F over B2
with parameter ¢ = (g1, g2) and we write

(2.3) INF1=  Lm - IZ[F],
Z—(—ig1,—igz)
where ' = (21, z2) approaches (—ig1, —ig2) through values in Q.
Let {e,} denote a complete orthonormal system in H such that the

en’s are in B*. For each h € H and z € B, we introduce a stochastic
inner product (-,-)™~ on H x B defined by

n

lim h,ei¥(x,e;), if the limit exists
(24)  (h,z)~ = {n—x J;( (@)
0, otherwise.

Then, for every h € H, (h,z)™ is a Borel measurable function on B
having a Gaussian distribution with mean 0 and variance ||h||2. Also if
both h and z are in H, then (h,z)~ = (h,z).

A subset E of a product abstract Wiener space B? is said to be
scale-invariant measurable provided {(az1,Bz2) : (z1,22) € E} is ab-
stract Wiener measurable for every & > 0 and 8 > 0, and a scale-
invariant measurable set N is said to be scale-invariant null provided
(v x v)({(az1, Bx2) : (x1,722) € N}) =0 for every a« > 0 and 8 > 0. A
property that holds except on a scale-invariant null set is said to hold
scale-invariant almost everywhere (s-almost everywhere). Given two
complex-valued function F' and G on B?, we say that F = G s-almost
everywhere, and write F' ~ G, if F(ax,Bz2) for v x v almost every
(z1,72) € B? for all « > 0 and 3 > 0. For a functionals F on B2, we
will denote by [F] the equivalence class of functionals which are equal
to F' s-almost everywhere.
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DEFINITION 2.2. Let A; and As be bounded, nonnegative self-adjoint
operators on H. Let F4, a, be the space of all functions G on B? which
have the form

(45 b, ;)™ } du(h)
1

(2.5) G(ml,xg)z/Hexp{z'

2
1=

for p € M(H).

As is cﬁstomary, we will identify a functional with its s-equivalence
class and think of F4, 4, as a collection of functionals on B 2 rather than
as a collection of equivalence classes.

Let M (H) denote the space of complex Borel measures . on H. Then
M(H) is a Banach algebra under convolution as multiplication with the
norm ||u|l where {|u| is the total variation of x. In addition the map
o — [F] defined by (2.5) sets up an algebra isomorphism between M (H)
and Fa, 4, if the range of A; + Aj is dense in H. In this case Fy4, 4,
becomes a Banach algebra under the norm || F|| = ||o|.

REMARK 2.3. Let F(B) denote the class of all functions F on B of
the form

F(z) = /H exp{i(h,2)™} du(h)

for some 1 € M(H). Then we know that if A; is the identity operator
on H and Aj = 0, then Fy4, 4, is essentially the Fresnel class F(B).

THEOREM 2.4 ([13]). Let G € Fa, a4, be given by (2.5). Then the
analytic Feynman integral of G over B? exists and

2 .
(26) {61= [ exp{= 3 5145 h } du(h
j=1"%

for all nonzero real numbers ¢1, ¢s.

To simplify the expressions, we use the following notations: For j =
1,2, we write

-

€ = (ej,l,...,ej,n].) EHnj,
(€, z;)~ = ((ej1,25) .-, (€n;>25)7),
(€j,h) = ((ej’l,h>,...,(ej,nj,h)), he H
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and

—

n
Ujn = (Vj1,-.-,05,) €R,
n
dijn = dvji--dvjn, [T’ =Y vl

In particular if n =2 nj, we ;ienote Ujm as Uj. That is, U; = U,
dvj = dUjn,; and |T;]° = || for j = 1,2. Also for i, v; € R™,

"
Tj T =) kUi
k=1
Hence (1.1) can be expressed alternatively as
(2.7) Ky na (€1, 72) = ((€1,21)7, (€2, 22)").

The followings are some examples of the simplified expressions used in
this paper,

nj

- . 1/2

liz;V; + (€5, A;/Zh)l = Z('lzjvj,k + (€55 Aj/ )2,
k: 1

S 41/2 o ~

@, ARy - (&, 25 = E(em h)(ej,k T5)

for j =1,2.

3. Change of scale formulas

We begin this section by giving some existence theorems of the ana-
lytic Wiener integral and the analytic Feynman integral of functions on
abstract Wiener space which need not be bounded or continuous.

THEOREM 3.1. Let F(z1,z2) = G(z1,22)¢(Xny n,(21,22)) where
G € Fa, a, Is given by (2.5), ¢ € Lp(R™*™) for 1 < p < oo and
Xnano Is given by (1.1) or (2.7). Then for each (z1,22) € Q, F is ana-
Iytic Wiener integrable and

(3.1)

= "3/2 1 - 1/2
IZ(F) = / /}R . exp 22 —(|iz;0; + (e],AJ/ h)|?
n1+ng '

- HA§/2hH ) b5, %) d 4y du(h).
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PROOF. Let z;, j = 1,2, be positive real numbers. We begin by
evaluating the Wiener integral

I(Z, F) .=_/B2 F(zl_l/le,z;l/2:v2)d(z/ x v)(z1, z2)

2
_ L =1/2 41/23 A\~
_/Bz/Hexp{jE:1 iz; '"(A;'"h, z;) }

¢(z;1/2(€1’ m1)/\1, 29 /2(52, x2)~) du(h) d(l/ X y)(ml, :172).

Using the Fubini theorem, we change the order of integration in the
above equation. In fact, we have

/H /B [(z; 2@, 1), 25 (@, 2) ) (v X v) (21, 32) dps(h)
2 2 \s/2 o 2 . B o
=TI [, fon, Pt {32 35} d it

which is finite since ¥ € L,(R™*"2) and p € M(H). For a given
h € H, using the Gram-Schmidt process, we obtain ejn;4+1 in H such
that {ej1,...,€jn;,€jn;+1} forms an orthonormal set in H and

1
1/2 1/2
Aj/ h = E :<ej,kvAj/ h)ejj + cjejm+1,
k=1

where
2 - 1/2
¢; = (1A} ?RI? - (&), A} R[22
for each j = 1,2. Hence we have
& / /
I(Z, F =// exp iz 2 (&5, AYPh)Y - (&5, m5)™
Gr=[ | {sz (@, A7) - (&, )
+ e(egnyrr,wi) ) Jolar V2@ @), 5 P (6 ma))
d(v x v)(z1,z2) du(h).

By the Wiener integration formula, we have

1 F):ﬁ(fi)(”"“m / / exp{zzj[z'«a- AV 5
3 b o9 [ pt Jr 414 2

Z4 — — — —~ -
+ CjVjn;+1) — Ejlvjmj“l—llZ] }@D(vl, U2) AU, +1 AUy +1 dpa(h).
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Evaluating the above integral with respect to vjn;+1 for j = 1,2 and
using the expression for ¢; we obtain

2 2 .
> ) =TT(Z2)"" L imdt + 5 AV
Iz F) —jl;[l(%) / /IR exp{j}; 5 5237 + (65, 43R
— 143 I1%) b (31, ) di i dpa(h).
Now we will show that the right hand side of the above expression is an
analytic function of (z1,22) € Q. Let (214,221) — (21,%2) in Q. Then

there exists a; > 0 such that Rez;; > o5, 7 = 1,2, for all sufficiently
large | and by the Bessel inequality, we have

lexp{
J=1

2 .
<exp{~ Y L5 lv (a1, )

J=1

1 R - 4172 1/2 S
7z 1237+ @, A7 WP = 143 °1P) fo @1, )

Mw

which is integrable on H x R™*"2 since ¢y € L,(R™™™2) and p € M(H).
Hence we can apply the dominated tonvergence theorem to the last
expression for I(Z, F) to conclude that it is a continuous function of
(21, 22) € Q. Moreover by using the Morera theorem, we easily show that
it is an analytic function of (21, 22) throughout €2 and this completes the
proof. O

If we restrict our attention to the case p = 1, by applying the domi-
nated convergence theorem to the expression (3.1), we obtain the follow-
ing existence theorem of the analytic Feynman integral. But if p > 1, we
are not able to justify the application of the dominated convergence the-
orem and so we could not claim the existence of the analytic Feynman
integral.

COROLLARY 3.2. Let F(z1,x2) be given as in Theorem 3.1. Then for
each nonzero real numbers q1, qz, F' is analytic Feynman integrable and

(3:2)
2 ZQ] n]/2// l —; 1/2h>|
| | ex E 1q;U; + (€5,
= S p 2 q;V; + {€j

— 1432 hI1?) b (51, 52) d du(h)-
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Let M(R™72) be the set of functions ¢ defined on R™*"2 by

2
(3.3) ¢(7_“'1, 7—"2) = / exp{i Z T_"J . 17j} dp(Ul,ﬁz)
RP1+72 =1

where p is a complex Borel measure of bounded variation on R™+"2,

THEOREM 3.3. Let F(z1,z2) = G(x1,22)¢(Xn, no(T1,22)) whereG €
Fa, ayy ¢ € M(RMY2) and X, n, are given by (2.5), (3.3) and (1.1),
respectively. Then for each Z € ), F is analytic Wiener integrable and

2
1 1/2, 12
= ex — A h
/H/R of 2232 (114}

+ 23 - (&, A7 %R) +155(%) } dp(@1, 52) du(h).

(3.4)

Moreover for each nonzero real numbers qi,q2, F is analytic Feynman
integrable and

2

IF =/ / ex A2
(3.5) alF) H JRmM+n2 p 22‘1] (145w

7j=1
+ 28 - (&), A} *h) + |5 1%) } dp(@, 52) dp(h).

PRrRoOOF. Using the expressions (2.5), (3.3) and Fubini theorem, we
have for positive real numbers z1, 29

I(7,F) = / F(z7 Y2y, 55 20) d(v x v) (@1, 22)

V242 gy
//IR"I"'"Q L2exp ZZZ (AJ ’ -7) +U.7 (6_7,1;]) ]}

j=1
d(v x v)(z1, z2) dp(v1, V2) du(h).

By the same method as in the proof of Theorem 3.1, we obtain
/ / / exp Zzz 1/2 [(e;, A 1/2/1) (€, 25)~
R"1tn2 J B2 =1
+ Cj(ej,nj-i-la w])N + 6] ’ (EJ’ w])N]}
d(v x v)(w1,22) dp(51, %) du(h),
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where c; is given as in the proof of Theorem 3.1. Evaluating the Wiener
integral in the last expression, we have

F) ARy + 72
CLR e 2 (841065, 43 R + 53}

dp(1, V2) dp(h).
Finally using the expression for c;, we obtain
2

- 1
I(7,F) = /H /R e 22——||A;/2h||2

+ 23 - (&, A7 *h) + 15,21} dp(@, %) du(h).

The exponential in the last expression is bounded in absolute value by
1 for Z € Q. Since p is a complex Borel measure of bounded variation
on R™*72 it follows that the last expression above is analytic in Z for
7€ Q and is continuous in 7 for 7 € 2. This completes the proof. O

Using the linearity of the analytic Wiener integral and the analytic
Feynman integral on abstract Wiener space, we have the following corol-
lary.

COROLLARY 3.4. Let F(z1,z2) = G(z1,22)¥(Xn, ny (@1, 22)) where
G € Fa, a, is given by (2.5), ¥ = ¢ + ¢ € Ly(R™+"2) + M(R™*"2)
for 1 < p < oo and Xy, n, is given by (1.1). Then for each 7 € Q, F
is analytic Wiener integrable and IZ[F)] is given by the sum of the right
hand sides of (3.1) and (3.4). Moreover if we restrict our attention to the
case p = 1, for each nonzero real numbers q1, q2, F' is analytic Feynman
integrable and I¢ [F is given by the sum of the right hand sides of (3.2)
and (3.5).

Now we give a relationship between Wiener integral and analytic
Wiener integral on abstract Wiener space.

THEOREM 3.5. Let {ej, : n = 1,2,...}, j = 1,2, be complete or-
thonormal sets in H. Let F(x1,z2) = G(z1,22)V(Xn, n, (21, 22)) where
G € Fa,,a, Is given by (2.5), ¥ € Lp(R™*™2) for 1 < p < 0o and Xy, n,
is given by (1.1). Then for each Z € Q, we have

2
z . mi/2 _ma/2 1—2z ~
R =, tm [ oY I G ) )

(3_6) mi,mg—0o0 =

F(z1,x2)d(v X v)(z1,x2).
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PROOF. Let m; be natural numbers with m; > n; for j = 1,2 and

let I'(my,m2) be the Wiener integral on the right hand side of (3.6). By
(2.5) and the Fubini theorem, we have

2 1/2
D(my, ma) //Bzexp S (ejimy» )P +i(AY R, 7))

Y((e1,21)”~ ,(62,562) ) d(v x v)(z1, 22) du(h).

We can evaluate the above Wiener integral either by direct calculations
as in the proof of Theorem 3.1 or by using Lemma 3.6 of [24] and obtain

n/2 m/2
I'(ma,mo) = H(QW)J zJ J //]Rnl*‘"?

2
' zj—1 1/2, 1/2
exp{ 3| @om, 47 1143 hp?

.. - Y g g
+ 7!’&21'1)]' -+ (eJ,A1/2h>| ] }1/1(111, v2) dvi dvs d,u(h).
J

By the Bessel inequality and the fact that m; > n;, the absolute value
of the integrand in the last expression above is bounded by

oxp{= > B2, ()

j=1

which is integrable on H x R™*"2, since ¢ € L,(R™*"2) and p €
M (H). Hence by the dominated convergence theorem and the Parseval’s
relation, we obtain

lim
m1,mg—00

n/2 1
V" ], fonn 2 25 55 + 0 410
Rn1+n2 , 2

||A1/2h|| | }o(@1,22) don s du(n).

z;nlﬂ m2/2 I'(my, ms)

By equation (3.1) in Theorem 3.1, the proof is completed. O

Moreover if p = 1, we obtain the following relationship between
Wiener integral and analytic Feynman integral on abstract Wiener space.

THEOREM 3.6. Let {e;n : n=1,2,...} be given as in Theorem 3.5.
Let F(z1,z2) = G(x1,22)¥(Xn, nyo(x1,22)) where G € Fa, a, is given
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by (2.5), ¥ € L1(R™*"2) for 1 < p < oo and Xy, n, Is given by (1.1).
Let {zjn:n=1,2,...}, j = 1,2, be sequences of complex numbers with
positive real part and z;, — —iq; asn — co. Then we have

(3.7)
2

. 1—2;m.
. mi/2 ma/2 MG ~
II[F]=_lim 2 111/1 29 1‘2n/2 €xp e |(ej;mj,mj) |2
B2 2

™mi,ma—00 —
]:
F(z1,z9) d(v x v)(x1, z2).

Proor. The proof of this theorem is similar to that of Theorem
3.5. Let m; be natural numbers with m; > n; for j = 1,2 and let
T'(21,mq, #2,m;) be the Wiener integral on the right hand side of (3.7).
By the same method as in the proof of Theorem 3.5, we have

Zj,m "1/2 1 m]/2
F(zl,mvz?,mz) :H( ]27r]> z / /R 1+n2
3:m e

i=1
Zjm; — 1 1/2
exp{ Y[ L 1<ej;mj,A;/"‘ 2~ S 1AY AP
j=1 Z]’mj
. " o 4172 o L
T 2z li2j,m; U + <e]7A]/ h)| ]}1/’(7)17112)
U
d’Ul d’l_)'z d,u(h)

By the Bessel inequality we know that the absolute value of the integrand
in the last expression above is bounded by |¢(¥1, ¥2)|, which is integrable
on H x Rt72 gince ¢ € L;(R™*"2) and u € M(H). Hence by the
dominated convergence theorem and the Parseval’s relation, we obtain

. mi1/2_ma/2
my ’,1,311211__)00 Zl ,m1 Z? ,ma F(Zl’ml ’ zzme)

ngJ nJ/Q// [ S 412
ex U; + (€5, A/’ h
S P : 2q ;U + (€; 3 >|

- ||A1/2h|| ]} (1, T2) A d du(h).
By equation (3.2) in Corollary 3.2, the proof is completed. O

THEOREM 3.7. Let {e;, : n = 1,2,...} be given as in Theorem 3.5.
Let F(x1,22) = G(z1,22)9(Xnyno(x1,22)) where G € Fa, 4,(B), ¢ €
M(R™*"2) and X, », be given by (2.5), (3.3) and (1.1), respectively.
Then equation (3.6) holds.
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ProoF. Let m; be natural numbers with m; > n; for j = 1,2 and
let T'(m1,m2) be given as in the proof of Theorem 3.5. By (2.5), (3.3)
and Fubini theorem, we have

m17m2

exp |(€5,m> 5)"

R™M1tn2 J B2 j:l

+z(A1/2h z;)~ + v - (€, 25)” ]}

d(v x v)(z1, z2) dp(v1, U2) du(h).

Evaluating the above Wiener integral by using Lemma 3.7 of [24], we
obtain

2
F(ml;m2 :HZ] m1/2/ /]Rn1+n2 exp{Z[ 2ZZJ| Jimgo 1/2>‘

ij=1

1_, o 1/2 1 _.2 1/2, 12
S— Ry — — A

T (8 A7) — o S14720)?) )
dp(v1, ¥2) du(h).

By the Bessel inequality, we know that the absolute value of the last
expression above is bounded by 1 which is integrable on H x R™*"2
with respect to the measure p x . Hence by the dominated convergence
theorem and the Parseval’s relation, we obtain
z;m /2 z;nz/ 2

lim
™mi,ma—o0

Syl
H JR™M1tn2

dp(th, v2) du(h).
By equation (3.4) in Theorem 3.3, the proof is completed. O

F(ml,mz)

1

2
— 2zj

1/2 _, -
(1452 R11% + 25 - (&, 43R + ;2] }

J=1

Modifying the proof of Theorem 3.7, by replacing “z;” by “z;,”,
j = 1,2, whenever it occurs, we have the following corollary.

THEOREM 3.8. Let {ejn :n = 1,2,...} and {2, : n =1,2,...} be
given as in Theorem 3.6 and let F be given as in Theorem 3.7. Then
equation (3.7) holds.

From Theorems 3.5, 3.7 and the linearity of the analytic Wiener in-
tegral on abstract Wiener space, we obtain the following corollary.

COROLLARY 3.9. Let {e; :n=1,2,...} be given as in Theorem 3.6
and let F' be given as in Corollary 3.4. Then equation (3.6) holds.
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Similarly, from Theorems 3.6, 3.8 and the linearity of the analytic
Feynman integral on abstract Wiener space, we have the following corol-
lary.

COROLLARY 3.10. Let {ejn : n =1,2,...} and {2zjn : n = 1,2,...}
be given as in Theorem 3.6 and let F be given as in Corollary 3.4 with
p = 1. Then equation (3.7) holds.

Our main result, namely a change of scale formula for Wiener inte-
grals on abstract Wiener space now follows from Corollary 3.9.

THEOREM 3.11. Let {ejn :n =1,2,...} be given as in Theorem 3.6
and let F' be given as in Corollary 3.4. Then for any p; >0, j=1,2,

[ Flors paa) dlw x v) (o, 22)
B

2
(38) _ —my —mz/ pJ__l g ™2
F(z1,z2) d(v x v)(z1, 22).

PROOF. By letting z; = pj_2 for 7 = 1,2 in (3.6), we have equation
(3.8). O

Obviously the constant function ¢ = 1 is a member of M(R™+72),
Hence we have the following corollary which is a change of scale formula
for Wiener integrals on an abstract Wiener space given in [23].

COROLLARY 3.12. Let {e;n : n = 1,2,...} be given as in Theorem
3.5 and let F € Fa, A,. Then for any p; > 0, j = 1,2, equation (3.8)
holds.

4. Corollaries

In this section we give various corollaries which show that our results
in Section 3 are indeed very general theorem.

4.1. Abstract Wiener space

As we see in Remark 2.3, if A; is the identity operator on H and A,
is the zero operator, then F4, 4, is essentially the Fresnel class F(B)
and

II[G(z1,22)] = IP [Go(z1)]



130 Il Yoo, Teuk Seob Song and Byoung Soo Kim

where Go(z1) = G(z1,z2) for all (z1,72) € B? and IZ'[Go(x1)] means
the analytic Feynman integal over B.

Hence all of the results discussed in [24] hold as our corollaries. In
particular, we obtain the following change of scale formula for Wiener
integrals on abstract Wiener space.

COROLLARY 4.1 (Theorem 3.14 in [24]). Let F(z) = G(z)¥((e1,x)",
., (er,x)™) where G € F(B) and ¥ = ¢+ ¢ € L,(R") + M(R"),1 <
p < o0. Then for any p > 0,
(4.1)

| Plow)dviz) = tim o [ exp{

4.2. Classical Wiener space

2": (e, 2} (z) dv(z).
k=1

Let Hy = Hyla,b] be the space of real-valued functions f on [a,b]
which are absolutely continuous and whose derivative Df is in La[a, b].
The inner product on Hy is given by

b
(1.9 = [ (ONED)ds

Then Hg is a real separable infinite dimensional Hilbert space. Let
By = By[a, b] be the space Cp|a, b] of all continuous functions z on [a, b|
with z(0) = 0 and equip By with the sup norm. Let vy be classical
Wiener measure. Then (Hy, By, p) is an example of an abstract Wiener
space. Note that if {e, } is a complete orthonormal set in Hp then {De,,}
is also a complete orthonormal set in La[a,b] and (en,x)™ equals the
Paley-Wiener-Zygmund stochastic integral f:(Den)(:s) dz(s) for s-a.c.
x € By.

In [4], Cameron and Storvick introduced a Banach algebra S of func-
tionals on Cyla, b] which are expressible in the form

(4.2) F(z) = /L - exp{z’ /abv(s) Ja:(s)} do(v)

for s-a.e. z € Cpla,b], where ¢ € M(Lz[a,b]). Then we know that
F e F(By)ifand only if F € S.

Hence we obtain the following change of scale formula for Wiener
integrals on classical Wiener space.

COROLLARY 4.2 (Theorem 2 in [5]). Let p > 0 and let {¢x}32, be a
complete orthonormal sequence of functions on [a,b]. Then if F € S is
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given by (4.2),
(4.3)

/ Flpx)dve(z)
Cola,b]

“ it [ eSS [ et dst0)] '} Pla) e
.

4.3. Some other examples

Ahn, Johnson and Skoug [1] established a very general theorem in-
suring that many functions of interest in Feynman integration theory
and quantum mechanics are in F(B) for various abstract Wiener space
(H, B,v). Below are some examples of functionals in [1].

1. For ¢ € M(R?),
f(.'L') = 1/1((37, h‘l)N’ ey (Ia h’d)N)'

2. For a Borel measure 7 on [0,t] and 0(r,-) = f.(-) where u, €
M(R),

f(z) = /0 6(r,2(r)) dn().

3. For a measure space Y and ¢ defined on Y x R? by 0(y, ") = i, (")
where u, € M(R?),

50 = [ 0w [ sto.v)e(6)ds) anty)

for an appropriate function g.
By Corollary 4.1 we have the following result.

COROLLARY 4.3. All of the functions discussed in Corollaries 1-11 of
(1] satisfy the change of scale formula (4.1) where {ex}72 , is a complete
orthonormal set of functions in the corresponding Hilbert space H.

Another examples of functionals in F(B) or § are given in [4, 6, 9,
10, 11, 12, 17, 18, 19]. Hence we have the following corollary.

COROLLARY 4.4. All of the functions considered in [4, 6, 9, 10, 11,
12, 17, 18, 19] satisfy the change of scale formula (4.1) or (4.3), where
{er}22, is a complete orthonormal set of functions in the correspond-
ing Hilbert space H or {¢}3>, is a complete orthonormal sequence of
functions on [a, b).
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