• Title/Summary/Keyword: Bamboo charcoal

Search Result 31, Processing Time 0.031 seconds

Characteristics of Physical and Adsorption of Korean Traditional Charcoal (우리나라 전통 숯의 물리.화학적 특성)

  • Kim, Joon-Tae;Kim, Sun-Hwa;Kim, Hae-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.77-86
    • /
    • 2006
  • The water purification was very important in Korea which has not sufficient water resource and while adsorption method among the various methods to eliminate the water pollutants has been widely used by activated carbon. This study was conducted the basic experiment for hall distribution, pH, conductivity, electronic microscope, cation exchange and inorganic materials the adsorption capacity of Korean traditional charcoal which has similar characteristics to activated carbon of organic pollutants. As a result of observing Korean traditional charcoal with electronic microscope, it was found that it has porous structure, oak charcoal has circular structure, pine charcoal has square structure and bamboo charcoal has hexagonal structure, which has high void fraction per unit area because of its thin cell wall structure. As a result of experimenting hall distribution, hall distribution of bamboo high temperature charcoal is high as 0.269cc/g and has the greatest inorganic contents and cation exchange capacity(CEC) which are the important factor of chemical adsorption.

Micro-Structural and Electrochemical Properties of Activated Carbon Synthesized from Natural Bamboo (천연 대나무로부터 합성된 활성 탄소의 미세구조 및 전기화학적 특성)

  • YANG, DONG-CHEOL;KIM, SU-WON;CHOURASHIYA, M.G.;PARK, CHOONG-NYEON;PARK, CHAN-JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.418-427
    • /
    • 2019
  • Activated carbon was synthesized from bamboo charcoal by KOH activation at various temperatures for electrochemical double layer capacitor applications. The micro-structural and surface properties of all the samples were characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption/desorption isotherm method. The electrochemical properties of the activated bamboo charcoal were examined by cyclic voltammetry in the potential window of -1.0 to 0.2 V in 6 M KOH electrolyte at different scan rates. An electrode made from the sample activated with 7.5 M KOH and heat treated at $750^{\circ}C$ for 3 h gave a maximum capacitance of 553 F/g at 1 mV/s and 450 F/g at 10mV/s.

Development of Biomass-Derived Anode Material for Lithium-Ion Battery (리튬이온 전지용 바이오매스 기반 음극재 개발)

  • Jeong, Jae Yoon;Lee, Dong Jun;Heo, Jungwon;Lim, Du-Hyun;Seo, Yang-Gon;Ahn, Jou-Hyeon;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2020
  • Biomass bamboo charcoal is utilized as anode for lithium-ion battery in an effort to find an alternative to conventional resources such as cokes and petroleum pitches. The amorphous phase of the bamboo charcoal is partially converted to graphite through a low temperature graphitization process with iron oxide nanoparticle catalyst impregnated into the bamboo charcoal. An optimum catalysis amount for the graphitization is determined based on the characterization results of TEM, Raman spectroscopy, and XRD. It is found that the graphitization occurs surrounding the surface of the catalysis, and large pores are formed after the removal of the catalysis. The formation of the large pores increases the pore volume and, as a result, reduces the surface area of the graphitized bamboo charcoal. The partial graphitization of the pristine bamboo charcoal improves the discharge capacity and coulombic efficiency compared to the pristine counterpart. However, the discharge capacity of the graphitized charcoal at elevated current density is decreased due to the reduced surface area. These results indicate that the size of the catalysis formed in in-situ graphitization is a critical parameter to determine the battery performance and thus should be tuned as small as one of the pristine charcoal to retain the surface area and eventually improve the discharge capacity at high current density.

Manufacturing of Wood Charcoal Cup by Using Carbonization Method and Its Water Repellency (목재를 이용한 무할렬 숯잔 제조 및 발수특성)

  • Park, Sang Bum;Lee, Min
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.3
    • /
    • pp.207-212
    • /
    • 2014
  • With increased interests in environmental issues, people are looking for new materials that serve special and bio-activated functions. One of interesting materials is charcoal which has excellent adsorption ability for harmful volatile organic compounds, fireproof performance, far-infrared ray emission, and electromagnetic shielding. Since non-crack carbonized board was developed from wood-based composite materials, carbonization method might be applied to woodcraft products such as wood cup and bamboo. In this study, manufacture of wood charcoal bowl was conducted with carbonization method developed in 2009 in order to activate wood products market. Ash tree(Fraxinus rhynchophylla) cup was carbonized at $600^{\circ}C$ with two pretreatments which were phenol resin and wood tar solution treatment. After carbonization of ash tree cup, non-crack charcoal cup were successfully manufactured. Phenol resin treatment affected on charcoal cup manufacturing both positively and negatively. For a positive way, it prevented shrinkage. For a negative way, it decreased water repellency. On the contrary, wood tar treatment accelerated shrinkage a bit and increased water repellency. Based on the results, wood tar can be used as pre-treatment solution for reducing post-treatment costs. We confirmed woodcraft products can be carbonized without deformation, so carbonization may provide a high value-added products from wood.

  • PDF

Mechanical Properties of Styrene-Butadiene Rubber Reinforced with Hybrids of Chitosan and Bamboo Charcoal/Silica

  • Li, Xiang Xu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.22-29
    • /
    • 2019
  • Chitosan-polyvinyl alcohol (PVA) -bamboo charcoal/silica (CS-PVA-BC/SI) hybrid fillers with compatibilized styrene-butadiene rubber (SBR) composites were fabricated by the interpenetrating polymer network (IPN) method. The structure and composition of the composite samples were characterized by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FT-IR). The viscoelastic behaviors of the rubber composites and their vulcanizates were explored using a rubber processing analyzer (RPA) in the rheometer, strain sweep and temperature sweep modes. The storage and loss moduli of SBR increased significantly with the incorporation of different hybrid fillers, which was attributed to the formation of an interphase between the hybrid fillers and rubber matrix, and the effective dispersion of the hybrid fillers. The mechanical properties (hardness, tensile strength, oxygen transmission rate, and swelling rate) of the composite samples were characterized in detail. From the results of the mechanical test, it was found that BC-CS-PVA0SBR had the best mechanical properties. Therefore, the BC-CS-PVA hybrid filler provided the best reinforcement effects for the SBR latex in this research.

Effects of Bamboo Charcoal and Bamboo Leaf Supplementation on Performance and Meat Quality in Chickens (대나무 숯과 대나무 잎의 급여가 육계의 생산성과 육질에 미치는 영향)

  • Kim, Sung-Hwan;Lee, In-Chul;Kang, Sung-Su;Moon, Chang-Jong;Kim, Sung-Ho;Shin, Dong-Ho;Kim, Hyoung-Chin;Yoo, Jin-Cheol;Kim, Jong-Choon
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.805-810
    • /
    • 2011
  • The present study was conducted to investigate the effects of dietary supplementation with bamboo charcoal (BC) and bamboo leaf (BL) on growth performance, feed intake, feed conversion efficiency, and meat quality in broiler chickens. Broiler chickens were fed for 30 days with a diet containing 0.5% bamboo charcoal or bamboo leaf. The results showed that the mortality rate during the study period was slightly lower in the BC and BL groups than the control group, while terminal weight and weight gain were significantly higher in the BC and BL groups than the control group. Dietary supplementation with BC or BL also improved feed conversion rate compared to chickens in the control group. Shear force was significantly lower in the BC and BL groups than that of the control group. The fat content of chickens fed with BC tended to decrease, while the ratio of unsaturated fat acid of chickens fed with BC or BL tended to increase, although without a statistically significant difference. Sensory evaluation revealed that overall acceptability was slightly higher in the BC and BL groups than the control group. There was no statistically significant change in the hematology and serum biochemistry parameters, compared with the control group in any group tested. The results of this experiment indicated that dietary supplementation with BC and BL may improve growth performance, feed conversion efficiency, and meat quality in broiler chickens.

The Cesium Removal Using a Polysulfone Carrier Containing Nitric Acid-treated Bamboo Charcoal (질산으로 표면처리한 대나무 활성탄을 첨가한 폴리술폰 담체의 세슘제거 효율 규명)

  • Rahayu, Ni Wayan Sukma Taraning;Kim, Seonhee;Tak, Hyunji;Kim, Kyeongtae;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.529-542
    • /
    • 2020
  • The cesium (Cs) sorption characteristics of a bead-type polysulfone carrier contained HNO3-treated bamboo charcoal (3 - 5 mm in diameter) in water system were investigated and its Cs removal efficiency as an adsorbent from water was also identified by various laboratory experiments. From the results of batch sorption experiments, the bead-type polysulfone carrier with only 5% HNO3-treated bamboo charcoal (P-5NBC) represented the high Cs removal efficiency of 57.8% for 1 hour sorption time. The Cs removal efficiency of P-5NBC in water after 24 hours reaction maintained > 69% at a wide range of pH and temperature conditions, attesting to its applicability under various water systems. Batch sorption experiments were repeated for P-5NBC coated with two cultivated microorganisms (Pseudomonas fluorescens and Bacillus drentensis), which were typical indigenous species inhabited in soil and groundwater. The Cs removal efficiency for two microorganisms coated polysulfone carrier (BP-5NBC) additionally increased by 19% and 18%, respectively, compared to that of only P-5NBC without microorganisms coated. The average Cs desorption rate of P-5NBC for 24 h was lower than 16%, showing the Cs was stably attached on HNO3-treated bamboo charcoal in so much as its long-term use. The maximum Cs sorption capacity (qm) of P-5NBC calculated from the Langmuir isotherm model study was 60.9 mg/g, which was much higher than those of other adsorbents from previous studies for 1 h sorption time. The results of continuous column experiments showed that the P-5NBC coated with microorganisms packed in the column maintained > 80% of the Cs removal efficiency during 100 pore volumes flushing. It suggested that only 14.7 g of P-5NBC (only 0.75 g of HNO3 treated bamboo charcoal included) can successfully clean-up 7.2 L of Cs contaminated water (the initial Cs concentration: 1 mg/L; the effluent concentration: < 0.2 mg/L). The present results suggested that the Cs contaminated water can be successfully cleaned up by using a small amount of the polysulfone carrier with HNO3-treated bamboo charcoal.

Combustion Characteristics of Bamboo Charcoal Boards (대나무숯 성형보드의 연소특성)

  • Park, Sang-Bum;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The fire retardant bamboo charcoal (BC) boards were manufactured for interior building materials in this study, The BC boards were manufactured by mixing and pressing of the bamboo charcoal, expanded vermiculite, and inorganic binder. The combustion behaviors of the BC boards were investigated using a cone calorimeter at an incident heat flux of 50 kW/$m^2$. Three building materials (plywood, BC board of Japan, and gypsum board) were used to observe the burning behaviors of weight loss, total heat release rate, and maximum heat release rate. Surface test and toxicity evaluation of the BC board were also conducted. The weight loss of the BC board (12.0%) was lower than the nonflammable gypsum board (15.6%) after burning of 10 min. Total heat release of the BC was 3 MJ/$m^2$ (KS standard 8 MJ/$m^2$) and total heat release rate of the BC was 20 kW/$m^2$ (KS standard 200 kW/$m^2$). Therefore, the BC boards were adjustable for the third-grade flame retardant building materials. External appearance change and mouse toxicity were not found in the BC boards after the combustion test.

Effect of Natural Porous Materials on Storability of LDPE Packaged Sweet Persimmon 'Fuyu' (다공성 천연 소재가 '부유' 단감의 저장성에 미치는 영향)

  • Kim, Yong-Hun;Park, Jee-Sung;Kim, Kun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.79-84
    • /
    • 2015
  • This study was carried out in order to develop an economical and convenient way to improve storability of sweet persimmon 'Fuyu'. Natural porous materials (bamboo active carbon, chaff charcoal, and Ge-lite) pouching bags were enveloped in the conventional LDPE (low density polyethylene) package during room temperature and low temperature storage. The changes of soluble solids content, flesh firmness, flavor, decay, and softening of sweet persimmon were investigated in the 1- or 2-week intervals. The LDPE packaging with bamboo active carbon treatment was confirmed to maintain longer storability and higher quality than the LDPE packaging only. This method is expected to be applied to both of conventional and organic farming as an economical and convenient way to improve storability on long term storage and during distribution.

Formulation of Liquid Coating Agent using Bamboo Charcoal and its Characteristics (대나무숯 액상코팅제의 제조 및 특성)

  • Park, Sang-Bum;Lee, Hee-Young;Lee, Sang-Min;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.113-120
    • /
    • 2008
  • This study was performed to develop environmentally-friendly finishing materials for construction. In order to abate formaldehyde and ammonia in indoor air, liquid coating agents for indoor finishing were formulated with bamboo charcoal powder, cypress extracted water, and water-borne acrylic binder. Deodorization rate, far-infrared ray emission rate, anions emission amount, and anti-bacterial effect were investigated. Deodorization rate was increased as cypress extracted water content increased. Deodorization rates of the coating agents were 60.0~98.6% on formaldehyde and 76.7~86.2% on ammonia. No differences on far-infrared ray emission rate, anions emission amount, and anti-bacterial effect were found depending on different formulations. A 91.7% of far-infrared ray emission rate, 77 ea/cc of anions emission amount, and 99.4% of anti-bacterial effect were detected for all formulations. More effective application method of the coating agents revealed was a spray-gun. A $0.66kg/m^2$ of coating agent with a spray-gun and $0.94kg/m^2$ of coating agent with a brush was consumed each.