• 제목/요약/키워드: Ball-balancer

검색결과 19건 처리시간 0.026초

볼 자동균형장치를 채용한 드럼세탁기의 모델링 및 동적 거동 해석 (Modeling and Dynamic Analysis of a Front Loaded Washing Machine with Ball Type Automatic Balancer)

  • 이준영;조성오;김태식;박윤서
    • 소음진동
    • /
    • 제8권4호
    • /
    • pp.670-682
    • /
    • 1998
  • Ball type automatic balancer is used to reduce the vibration caused by unbalance of rotor. In this study, A analytic modeling of a front loaded washing machine with ball type automatic balancer has been suggested theoretically and ADAMS has been used to analyze the dynamic characteristics of automatic balancer. It is found from simulation and experimental results that the automatic balancer suppress the steady state vibration of washing machine effectively. The test results match with the simulation results of ADAMS, thereby the dynamic model of ADAMS can be used as virtual prototype to predict the vibration characteristics which could be changed by the modification of design variableand can reduce the design cycle sharphy. To maximize the balancing effect of automatic balancer, the friction between balls and race and the deviation between geometric center and rotation center of drum need to be minimized and the optimum design for the stiffness of flange shaft and the angular acceleration of drum should be achieved.

  • PDF

볼 자동균형장치를 채용한 드럼세탁기의 모델링 및 동적 거동 해석 (Modeling and Dynamic Analysis of a Front Loaded Washing Machine with Ball Type Automatic Balancer)

  • 이준영;조성오;김태식;박윤서
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.119-131
    • /
    • 1997
  • Ball type automatic balancer is used to reduce the vibration caused by unbalance of rotor. In this study, A analytic modeling of a front loaded washing machine with ball type automatic balancer has been suggested theoretically and ADAMS has been used to analyze the dynamic characteristics of automatic balancer. It is found from simulation and experimental results that the automatic balancer suppress the steady state vibration of the washing machine effectively. The test results match well with the simulation results of ADAMS, thereby the dynamic model of ADAMS can be used as virtual prototype to predict the vibration characteristics which could be changed by the modification of design variable and can reduce the design cycle sharply. To maximize the balancing effect of automatic balancer, the friction between balls and race and the deviation between geometric center and rotation center of drum need to be minimized and the optimum design for the stiffness of flange shaft and the angular acceleration of drum should be achieved.

  • PDF

회전기계의 진동저감을 위한 자동볼평형장치 (Automatic Ball Balancer for Vibration Reduction of Rotating Machines)

  • 정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.59-68
    • /
    • 2005
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After non-dimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF

자동볼평형장치가 부착된 광디스크 드라이브의 동특성해석 (Dynamic Analysis of an Optical Disk Drive with an Automatic Ball Balancer)

  • 김강성;정진태
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2511-2518
    • /
    • 2002
  • Dynamic behaviors and stability of an optical disk drive coupled with an automatic ball balancer (ABB) are analyzed by a theoretical approach. The feeding system is modeled a rigid body with six degree-of-freedom. Using Lagrange's equation, we derive the nonlinear equations of motion for a non -autonomous system with respect to the rectangular coordinate. To investigate the dynamic stability of the system in the neighborhood of the equilibrium positions, the monodromy matrix technique is applied to the perturbed equations. On the other hand, time responses are computed by the Runge -Kutta method. We also investigate the effects of the damping coefficient and the position of ABB on the dynamic behaviors of the system.

이중레이스를 갖는 자동평형장치의 진동해석 (Vibration Analysis of an Automatic Ball Balancer with Double Races)

  • 이동진;정진태;황철호
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1093-1102
    • /
    • 2000
  • Dynamic behaviors are analyzed for an automatic ball balancer with double races which is a device to reduce eccentricity of rotors. Equations of motion are derived by using the polar coordinate sys tem instead of the rectangular coordinate system which is used in other previous researches. To analyze the stability around equilibrium positions, the perturbation method is used. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

자동볼평형장치의 동적거동에 미치는 중력과 속도파형의 영향 (Effects of Gravity and Angular Velocity Profiles on the Dynamic Behavior of an Automatic Ball Balancer)

  • 정두한;정진태
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.511-516
    • /
    • 2004
  • The dynamic behavior of an automatic ball balancer (ABB) is studied considering the effects of gravity and angular velocity profiles. In this study, a physical model for an ABB installed on the Jeffcott rotor is adopted in order to investigate the effects of gravity and angular acceleration. The equations of motion for the rotor with ABB are derived by using Lagrange's equation. Based on derived equations, dynamic responses for the rotor are computed by using the generalized-o method. From the computed responses, the effects of gravity and angular velocity profiles on the dynamic behavior are investigated. It is found that the balancing of the rotor with ABB can be achieved regardless of gravity. It Is also shown that a smooth velocity profile yields relatively smaller vibration amplitude than a non-smooth velocity profile.

자동볼평형장치가 부착된 광디스크 드라이브의 동특성해석 (Dynamic Analysis of an Optical Disk Drive with an Automatic Ball Balancer)

  • 김강성;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.983-988
    • /
    • 2001
  • Dynamic behaviors and stability of an optical disk drive coupled with an automatic ball balancer(ABB) are analyzed by a theoretical approach. The feeding system is modeled a rigid body with six degree-of-freedom. Using Lagrange's equation, we derive the nonlinear equations of motion for a non-autonomous system with respect to the rectangular coordinate. To investigate the dynamic stability of the system in the neighborhood of the equilibrium positions, the monodromy matrix technique is applied to the perturbed equations. On the other hand, time responses are computed by the Runge-Kutta method. We also investigate the effects of the damping coefficient and the position of ABB on the dynamic behaviors of the system.

  • PDF

편심이 변하는 CD/DVD시스템의 자동 볼 평형장치 설계 지침 (Design Guidelines for the Automatic Ball Balancer in CD/DVD Systems with Varying Eccentricity)

  • 김보현;류제하
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.387-392
    • /
    • 1999
  • This paper presents design guidelines for the automatic ball balancer in CD/DVD systems with varying eccentricity. In these systems, the size of balancing balls should be limited by the restricted race space so that determination of the number and mass of balls should consider the radii of the race and the balls. In addition, the effects of viscosity and friction also should be taken into account for sufficient balancing. Based on the static equilibrium conditions, the number and mass of balls corresponding to the range of varying eccentricity have been determined. Dynamic simulation with viscosity and friction shows sufficient viscosity must exist to ensure stability and friction between balls and race must be minimized to guarantee accurate balancing.

  • PDF

자동 볼 평형장치의 진동 해석 (Vibration Analysis of an Automatic Ball Balancer)

  • 박준민;노대성;정진태
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.363-370
    • /
    • 1999
  • In this study, we establish a theory for dynamic behaviors of an automatic ball balancer, analyze its dynamic characteristics, and provide its design guide line. Equations of motion are derived by using the polar coordinate system instead of the rectangular coordinate system which was previously used in other researches. After nondimensionalization of the equations, the perturbation method is applied to locate the equilibrium positions and to obtain the linearized equations of motion around the equilibrium positions. The Eigenvalue problem is used to verify the dynamic stability around the equilibrium positions. On the other hand, the time responses are computed from the nonlinear equations of motion by using a time integration method.

  • PDF