• Title/Summary/Keyword: Baliga Figure of Merit

Search Result 5, Processing Time 0.026 seconds

Optimization simulation for High Voltage 4H-SiC DiMOSFET fabrication (고전압 4H-SiC DiMOSFET 제작을 위한 최적화 simulation)

  • Kim, Sang-Cheol;Bahng, Wook;Kim, Nam-Kyun;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.353-356
    • /
    • 2004
  • This paper discribes the analysis of the I-V characteristics of 4H-SiC DiMOSFET with single epi-layer Silicon Carbide has been around for over a century. However, only in the past two to three decades has its semiconducting properties been sufficently studied and applied, especially for high-power and high frequency devices. We present a numerical simulation-based optimization of DiMOSFET using the general-purpose device simulator MINIMIS-NT. For simulation, a loin thick drift layer with doping concentration of $5{\times}10^{15}/cm^3$ was chosen for 1000V blocking voltage design. The simulation results were used to calculate Baliga's figure of Merit (BFOM) as the criterion structure optimization and comparison.

  • PDF

Design and Optimization of 4.5 kV 4H-SiC MOSFET with Current Spreading Layer (Current Spreading Layer를 도입한 4.5 kV 4H-SiC MOSFET의 설계 및 최적화)

  • Young-Hun, Cho;Hyung-Jin, Lee;Hee-Jae, Lee;Geon-Hee, Lee;Sang-Mo, Koo
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.728-735
    • /
    • 2022
  • In this work, we investigated a high-voltage (~4.5 kV) 4H-SiC power DMOSFET with modifications of current spreading layer (CSL), which was introduced below the p-well region for low on-resistance. These include the following: 1) a thickness of CSL (TCSL) from 0 um to 0.9 um; 2) a doping concentration of CSL (NCSL) from 1×1016 cm-3 to 5×1016 cm-3. The design is optimized using TCAD 2D-simulation, and we found that CSL helps to reduce specific on-resistance but also breakdown voltage. The resulting structures exhibit a specific on-resistance (Ron,sp) of 59.61 mΩ·cm2, a breakdown voltage (VB) of 5 kV, and a Baliga's Figure of Merit (BFOM) of 0.43 GW/cm2.

A Study on Optimization of the P-region of 4H-SiC MPS Diode (4H-SiC MPS 다이오드의 P 영역 최적화에 관한 연구)

  • Jung, Se-Woong;Kim, Ki-Hwan;Kim, So-Mang;Park, Sung-Joon;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.181-183
    • /
    • 2016
  • In this work, the merged PiN Schottky(MPS) diodes based silicon carbide(SiC) have been optimized and designed for 1200V diodes by 2D-atlas simulation tool. We investigated the optimized characteristics of SiC MPS diodes such as breakdown voltage and specific on-resistance by varying the doping concentrations of P-Grid/epi-layer and space of P-Grid, which are the most important parameters. The breakdown voltage and specific on-resistance, based on Baliga's Figure Of Merit (BFOM), have been compared with and the SiC-based MPS diodes show improved BFOMs with low values of specific on-resistance and high breakdown voltage. It has been demonstrated 1,200 V SiC MPS diodes will find useful applications in high voltage energy-efficient devices.

Effect of P-Emitter Length and Structure on Asymmetric SiC MOSFET Performance (P-Emitter의 길이, 구조가 Asymmetric SiC MOSFET 소자 성능에 미치는 영향)

  • Kim, Dong-Hyeon;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.83-87
    • /
    • 2020
  • In this letter, we propose and analyze a new asymmetric structure that can be used for next-generation power semiconductor devices. We compare and analyze the electrical characteristics of the proposed device with respect to those of symmetric devices. The proposed device has a p-emitter on the right side of the cell. The peak electric field is reduced by the shielding effect caused by the p-emitter structure. Consequently, the breakdown voltage is increased. The proposed asymmetric structure has an approximately 100% higher Baliga's figure of merit (~94.22 MW/㎠) than the symmetric structure (~46.93 MW/㎠), and the breakdown voltage of the device increases by approximately 70%.

Vertical β-Ga2O3 Schottky Barrier Diodes with High-κ Dielectric Field Plate (고유전율 필드 플레이트를 적용한 β-Ga2O3 쇼트키 장벽 다이오드)

  • Se-Rim Park;Tae-Hee Lee;Hui-Cheol Kim;Min-Yeong Kim;Soo-Young Moon;Hee-Jae Lee;Dong-Wook Byun;Geon-Hee Lee;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.298-302
    • /
    • 2023
  • In this paper, we discussed the effect of field plate dielectric materials such as silicon dioxide (SiO2), aluminum oxide (Al2O3), and hafnium oxide (HfO2) on the breakdown characteristics of β-Ga2O3 Schottky barrier diodes (SBDs). The breakdown voltage (BV) of the SBDs with a field plate was higher than that of SBDs without a field plate. The higher dielectric constant of HfO2 contributed to the superior reduction in electric field concentration at the Schottky junction edge from 5.4 to 2.4 MV/cm. The SBDs with HfO2 field plate showed the highest BV of 720 V, and constant specific on-resistance (Ron,sp) of 5.6 mΩ·cm2, resulting in the highest Baliga's figure-of-merit (BFOM) of 92.0 MW/cm2. We also investigated the effect of dielectric thickness and field plate length on BV.