DOI QR코드

DOI QR Code

Effect of P-Emitter Length and Structure on Asymmetric SiC MOSFET Performance

P-Emitter의 길이, 구조가 Asymmetric SiC MOSFET 소자 성능에 미치는 영향

  • Kim, Dong-Hyeon (Department of Electronic Materials Engineering, Kwang-woon University) ;
  • Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwang-woon University)
  • 김동현 (광운대학교 전자재료공학과) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Received : 2019.10.21
  • Accepted : 2019.12.16
  • Published : 2020.03.01

Abstract

In this letter, we propose and analyze a new asymmetric structure that can be used for next-generation power semiconductor devices. We compare and analyze the electrical characteristics of the proposed device with respect to those of symmetric devices. The proposed device has a p-emitter on the right side of the cell. The peak electric field is reduced by the shielding effect caused by the p-emitter structure. Consequently, the breakdown voltage is increased. The proposed asymmetric structure has an approximately 100% higher Baliga's figure of merit (~94.22 MW/㎠) than the symmetric structure (~46.93 MW/㎠), and the breakdown voltage of the device increases by approximately 70%.

Keywords

References

  1. D. Peters, T. Basler, B. Zippelius, T. Aichinger, W. Bergner, R. Esteve, D. Kueck, and R. Siemieniec, Proc. PCIM Europe 2017; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (VDE, Nuremberg, Germany, 2017) p. 1. [DOI: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7990686]
  2. S. Ryu, C. Capell, E. Van Brunt, C. Jonas, M. O'Loughlin, J. Clayton, K. Lam, V. Pala, B. Hull, Y. Lemma, D. Lichtenwalner, Q. J. Zhang, J. Richmond, P. Butler, D. Grider, J. Casady, S. Allen, J. Palmour, M. Hinojosa, C. W. Tipton, and C. Scozzie, Semicond. Sci. Technol., 30, 084001 (2015). [DOI: https://doi.org/10.1088/0268-1242/30/8/084001]
  3. T. Kimoto and J. A. Cooper, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices, and Applications (John Wiley & Sons Singapore Pte. Ltd. 2014).
  4. K. Matocha, S. Banerjee, and K. Chatty, Mater. Sci. Forum, 858, 803 (2016). [DOI: https://doi.org/10.4028/www.scientific.net/msf.858.803]
  5. R. Siemieniec, D. Peters, R. Esteve, W. Bergner, D. Kuck, T. Aichinger, T. Basler, and B. Zippelius, Proc. 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe) (IEEE, Warsaw, Poland, 2017) p. 1. [DOI: https://doi.org/10.23919/EPE17ECCEEurope.2017.8098928]
  6. W. Ni, X. Wang, M. Xu, Q. Wang, C. Feng, H. Xiao, L. Jiang, and W. Li, IEEE Electron Device Lett., 40, 698 (2019). [DOI: https://doi.org/10.1109/LED.2019.2908253]
  7. A. Oraon, S. Shreya, R. Kumari, and A. Islam, Proc. 2017 7th International Symposium on Embedded Computing and System Design (ISED) (IEEE, Durgapur, India, 2017) p. 1. [DOI: https://doi.org/10.1109/ISED.2017.8303939]
  8. H. Takaya, J. Morimoto, K. Hamada, T. Yamamoto, J. Sakakibara, Y. Watanabe, and N. Soejima, Proc. 2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD) (IEEE, Kanazawa, Japan, 2013) p. 43. [DOI: https://doi.org/10.1109/ISPSD.2013.6694394]
  9. Y. Wang, Y. C. Ma, Y. Hao, Y. Hu, G. Wang, and F. Cao, IEEE Trans. Electron Devices, 64, 3719 (2017). [DOI: https://doi.org/10.1109/TED.2017.2723502]