DOI QR코드

DOI QR Code

Vertical β-Ga2O3 Schottky Barrier Diodes with High-κ Dielectric Field Plate

고유전율 필드 플레이트를 적용한 β-Ga2O3 쇼트키 장벽 다이오드

  • Se-Rim Park (Department of Materials Engineering, Kwangwoon University) ;
  • Tae-Hee Lee (Department of Materials Engineering, Kwangwoon University) ;
  • Hui-Cheol Kim (Department of Materials Engineering, Kwangwoon University) ;
  • Min-Yeong Kim (Department of Materials Engineering, Kwangwoon University) ;
  • Soo-Young Moon (Department of Materials Engineering, Kwangwoon University) ;
  • Hee-Jae Lee (Department of Materials Engineering, Kwangwoon University) ;
  • Dong-Wook Byun (Department of Materials Engineering, Kwangwoon University) ;
  • Geon-Hee Lee (Department of Materials Engineering, Kwangwoon University) ;
  • Sang-Mo Koo (Department of Materials Engineering, Kwangwoon University)
  • 박세림 (광운대학교 전자재료공학과) ;
  • 이태희 (광운대학교 전자재료공학과) ;
  • 김희철 (광운대학교 전자재료공학과) ;
  • 김민영 (광운대학교 전자재료공학과) ;
  • 문수영 (광운대학교 전자재료공학과) ;
  • 이희재 (광운대학교 전자재료공학과) ;
  • 변동욱 (광운대학교 전자재료공학과) ;
  • 이건희 (광운대학교 전자재료공학과) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Received : 2023.01.06
  • Accepted : 2023.02.27
  • Published : 2023.05.01

Abstract

In this paper, we discussed the effect of field plate dielectric materials such as silicon dioxide (SiO2), aluminum oxide (Al2O3), and hafnium oxide (HfO2) on the breakdown characteristics of β-Ga2O3 Schottky barrier diodes (SBDs). The breakdown voltage (BV) of the SBDs with a field plate was higher than that of SBDs without a field plate. The higher dielectric constant of HfO2 contributed to the superior reduction in electric field concentration at the Schottky junction edge from 5.4 to 2.4 MV/cm. The SBDs with HfO2 field plate showed the highest BV of 720 V, and constant specific on-resistance (Ron,sp) of 5.6 mΩ·cm2, resulting in the highest Baliga's figure-of-merit (BFOM) of 92.0 MW/cm2. We also investigated the effect of dielectric thickness and field plate length on BV.

Keywords

Acknowledgement

This work was supported by Technology Innovation Program (20016102) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea), Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0012451), and the present research has been conducted by the Research Grant of Kwangwoon University in 2023.

References

  1. S. J. Pearton, J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev., 5, 011301 (2018). [DOI: https://doi.org/10.1063/1.5006941]
  2. S. Roy, A. Bhattacharyya, P. Ranga, H. Splawn, J. Leach, and S. Krishnamoorthy, IEEE Electron Device Lett., 42, 1140 (2021). [DOI: https://doi.org/10.1109/LED.2021.3089945]
  3. W. Li, K. Nomoto, Z. Hu, D. Jena, and H. G. Xing, IEEE Electron Device Lett., 41, 107 (2019). [DOI: https://doi.org/10.1109/LED.2019.2953559]
  4. Y. Zhang, M. Sun, Z. Liu, D. Piedra, H. S. Lee, F. Gao, T. Fujishima, and T. Palacios, IEEE Trans. Electron Devices, 60, 2224 (2013). [DOI: https://doi.org/10.1109/TED.2013.2261072]
  5. M. H. Wong and M. Higashiwaki, IEEE Trans. Electron Devices, 67, 3925 (2020). [DOI: https://doi.org/10.1109/TED.2020.3016609]
  6. C. Joishi, Y. Zhang, Z. Xia, W. Sun, A. R. Arehart, S. Ringel, S. Lodha, and S. Rajan, IEEE Electron Device Lett., 40, 1241 (2019). [DOI: https://doi.org/10.1109/LED.2019.2921116]
  7. S. Dhara, N. K. Kalarickal, A. Dheenan, C. Joishi, and S. Rajan, Appl. Phys. Lett., 121, 203501 (2022). [DOI: https://doi.org/10.1063/5.0123284]
  8. D. Liu, Y. Huang, Z. Zhang, D. Chen, Q. Feng, H. You, J. Zhang, C. Zhang, and Y. Hao, ECS J. Solid State Sci. Technol., 10, 125001 (2021). [DOI: https://doi.org/10.1149/2162-8777/ac3afd]
  9. N. Allen, M. Xiao, X. Yan, K. Sasaki, M. J. Tadjer, J. Ma, R. Zhang, H. Wang, and Y. Zhang, IEEE Electron Device Lett., 40, 1399 (2019). [DOI: https://doi.org/10.1109/LED.2019.2931697]
  10. H. Chen, H. Wang, and K. Sheng, IEEE Electron Device Lett., 44, 21 (2022). [DOI: https://doi.org/10.1109/LED.2022.3222878]
  11. Y. Gao, A. Li, Q. Feng, Z. Hu, Z. Feng, K. Zhang, X. Lu, C. Zhang, H. Zhou, W. Mu, Z. Jia, J. Zhang, and Y. Hao, Nanoscale Res. Lett., 14, 8 (2019). [DOI: https://doi.org/10.1186/s11671-018-2849-y]
  12. A. S. Kumta, Rusli, and J. Xia, IEEE Trans. Electron Devices, 56, 2925 (2009). [DOI: https://doi.org/10.1109/TED.2009.2033155]
  13. R. Sharma, E. E. Patrick, M. E. Law, F. Ren, and S. J. Pearton, ECS J. Solid State Sci. Technol., 8, Q234 (2019). [DOI: https://doi.org/10.1149/2.0141912jss]
  14. P. H. Carey, J. Yang, F. Ren, R. Sharma, M. Law, and S. J. Pearton, ECS J. Solid State Sci. Technol., 8, Q3221 (2019). [DOI: https:/doi.org/10.1149/2.0391907jss]
  15. A. J. Green, J. Speck, G. Xing, P. Moens, F. Allerstam, K. Gumaelius, T. Neyer, A. Arias-Purdue, V. Mehrotra, A. Kuramata, K. Sasaki, S. Watanabe, K. Koshi, J. Blevins, O. Bierwagen, S. Krishnamoorthy, K. Leedy, A. R. Arehart, A. T. Neal, S. Mou, S. A. Ringel, A. Kumar, A. Sharma, K. Ghosh, U. Singisetti, W. Li, K. Chabak, K. Liddy, A. Islam, S. Rajan, S. Graham, S. Choi, Z. Cheng, and M. Higashiwaki, APL Mater., 10, 029201 (2022). [DOI: https://doi.org/10.1063/5.0060327]
  16. P. H. Carey IV, F. Ren, D. C. Hays, B. P. Gila, S. J. Pearton, S. Jang, and A. Kuramata, Jpn. J. Appl. Phys., 56, 071101 (2017). [DOI: https://doi.org/10.7567/JJAP.56.071101]
  17. P. H. Carey IV, F. Ren, D. C. Hays, B. P. Gila, S. J. Pearton, S. Jang, and A. Kuramata, Vacuum, 142, 52 (2017). [DOI: https://doi.org/10.1016/j.vacuum.2017.05.006]
  18. V. D. Wheeler, D. I. Shahin, M. J. Tadjer, and C. R. Eddy, ECS J. Solid State Sci. Technol., 6, Q3052 (2016). [DOI: https://doi.org/10.1149/2.0131702jss]
  19. Y. Jia, K. Zeng, J. S. Wallace, J. A. Gardella, and U. Singisetti, Appl. Phys. Lett., 106, 102107 (2015). [DOI: https://doi.org/10.1063/1.4915262]
  20. S. N. Mohammad, F. J. Kub, and C. R. Eddy Jr., Journal of Vacuum Science & Technology B, 29, 021021 (2011). [DOI: https://doi.org/10.1116/1.3562276]
  21. M. C. Tarplee, V. P. Madangarli, Q. Zhang, and T. S. Sudarshan, IEEE Trans. Electron Devices, 48, 2659 (2001). [DOI: https://doi.org/10.1109/16.974686]
  22. M. Higashiwaki, AAPPS Bull., 32, 3 (2022). [DOI: https://doi.org/10.1007/s43673-021-00033-0]