• Title/Summary/Keyword: Balancing control

Search Result 639, Processing Time 0.031 seconds

Development of a Distributed Web Caching Network through Consistent Hashing and Dynamic Load Balancing

  • Hwan Chang;Jong Ho Park;Ju Ho Park;Kil To Chong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.11C
    • /
    • pp.1040-1045
    • /
    • 2002
  • This paper focuses on a hash-based, distributed Wet caching network that eliminates inter-cache communication. An agent program on cache servers, a mapping program on the DNS server, and other components comprised in a distributed Web caching network were modified and developed to implement a so-called "consistent" hashing. Also, a dynamic load balancing algorithm is proposed to address the load-balancing problem that is a key performance issue on distributed architectures. This algorithm effectively balances the load among cache servers by distributing the calculated amount of mapping items that have higher popularity than others. Therefore, this developed network can resolve the imbalanced load that is caused by a variable page popularity, a non-uniform distribution of a hash-based mapping, and a variation of cache servers.

Congestion Control of CBT Multicast Routing Mechanism with load balancing on Internet (로드 밸런싱을 이용한 CBT 멀티캐스트 라우팅 프로토콜의 혼잡제어기법)

  • Yoe, Hyun;So, Sun-Hwe;Lee, Yoon-Ju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.154-157
    • /
    • 2001
  • In this paper, we propose a new CBT(core-based tree)multicast routing Mechanism by load balancing mechanism. CBT may result in traffice concentration and bottlenecks near the lore routers since traffice from all sources nodes the same set of links as approaches the core. So the router have to load packet to new core router for such congestion. Congestion information is given by rtt(round trip time) between designed core router and the other router.

  • PDF

Service Restoration Considering Load Balancing In Distribution Networks (부하균등화를 고려한 배전계통의 정전복구)

  • 최상열;김종형;신명철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.9
    • /
    • pp.513-520
    • /
    • 2003
  • Service restoration is an emergency control in distribution constrol centers to restore out-of-service area as soon as possible when a fault occurs in distribution networks. therefore, it requires fast computation time and high quality solutions for load balancing. In this paper. a load balance index and heuristic guided best-first search are proposed for these problem. The proposed algorithm consists of two parts. One is to set up a decision tree to represent the various switching operations available. Another is to identify the most effective the set of switches using proposed search technique and a load balance index. Test results on the KEPCO's 108 bus distribution system show that the performance is efficient and robust.

A New Modularized Balancing Circuit for Series Connected Battery cells

  • Lee, Hyo-Jae;Jung, Young-Seok
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.193-199
    • /
    • 2014
  • The series connected battery cells are mainly used in high voltage battery pack application. However parameter inequality of each battery cell makes battery voltage imbalance problem. In this paper, a new balancing circuit utilizing converter scheme for the series connected battery cells is proposed. Proposed circuit offers easy control and fast equalization time. Moreover the circuit can be used in a practical application because it has high modularity and can operate during the charging/discharging cycle. To show its superiorness and effectiveness, the principle of proposed circuit is explained with computer simulation and experiment is carried out using lithium-ion battery.

Autonomous Load Balancing Method in a Wireless Network Inspired by Synchronization Phenomena in the Nature (무선 네트워크에서 자연계 동기화 현상을 모방한 자율적 부하 균형 기법)

  • Park, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2230-2237
    • /
    • 2015
  • Inspired by the synchronization phenomena observed in the Nature, we propose an autonomous load balancing method for a wireless network. We model the load balancing problem of cells providing wireless access services as a synchronization problem in the Nature and design an algorithm for each cell to distribute loads in a self-determining way based on the load differences among its neighbor cells. Through simulations, we verify the feasibility of the proposed method in that cell loads can be balanced efficiently eve if cells make decision autonomously using their local information.

The AC Chopper LED Driving System Using The Y Type Balancing Transformer (Y형 밸런싱 트랜스포머를 적용한 AC초퍼 LED 구동 시스템)

  • Kim, Jin-Gu;Yoo, Jin-Wan;Kim, Yong-Ha;Park, Chong-Yeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.22-29
    • /
    • 2015
  • The AC-LED driving system which is connected directly to alternative current source is suitable for commercialization because of it's simple structure and low cost. However, it requires additional circuits compensating for current differences between the parallel connected LED strings. In this paper, we proposed the circuit compensating for current error of the three LED strings using the Y type balancing transformer. The proposed Half-bridge AC Chopper LED driving system used the ferrite material's balancing transformer. at the same time, it is able to dimming control. The proposed system is applied to 80W AC-LED module consist of three parallel strings. Experiment results present that Power factor and THD measured with power analyzer are 0.958 and 26.473% respectively satisfied with IEC61000-3-2 harmonics standard.

Single Stage Current-Balancing Multi-Channel LED Driver for LED TV (LED TV를 위한 단일전력단 전류평형 다채널 LED 구동회로)

  • Ryu, Dong-Kyun;Won, Chung-Yuen;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.564-571
    • /
    • 2014
  • A single-stage current-balancing multi-channel light-emitting diode (LED) driver is proposed in this study. The conventional LED driver system consists of two cascaded power conversion stages, i.e., an isolation DC/DC converter and LED driver. LED driver is usually implemented with the same number of expensive boost converters as those of LED channels to tightly control the current through each LED channel. Therefore, its overall system size is not only bulky, but the cost is rather high. By contrast, the proposed LED driver system is composed of a single power stage with the DC/DC converter and LED driver merged. Although the current balancing circuit of the proposed LED driver requires only passive devices instead of expensive boost converters, all currents through multi-channel LEDs can be well balanced. Therefore, the proposed LED driver features a small system size, improved efficiency, and low cost. To confirm the validity of the proposed driver, its operation and performance are verified on a prototype for a 46" LED TV.

A Study on the Multi-carrier PWM Methods for Voltage Balancing of Flying Capacitor in the Flying Capacitor Multi-level Inverter (플라잉 커패시터 멀티레벨 인버터의 플라잉 커패시터 전압 균형을 위한 멀리 캐리어 PWM 기법에 대한 연구)

  • Jin, Bum-Seung;Kim, Tae-Jin;Kang, Dae-Wook;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.298-301
    • /
    • 2005
  • The flying capacitor voltage control of the flying capacitor multi-level inverter (FCMLI) is very important for safe operation. The voltage unbalancing of flying capacitors caused serious problems in safety and reliability of system. In the FCMLI, balancing problem of the flying capacitor has its applications limited. The voltage unbalance is occurred by the difference of each capacitors charging and discharging time applied to FCMLI. This paper investigates and analyzes multi-carrier PWM methods to solve capacitor voltage balancing problem. The Phase-Shift PWM (PSPWM) method that is commonly used, The Modified Carrier-Redistribution PWM (MCRPWM) method and The Saw-Tooth-Rotation PWM (STRPWM) method are discussed and compared with respect to switching state, balancing voltage of capacitors and output waveform. These three PWM methods are analyzed by using a flying capacitor three-level inverter and provided result through simulation. Finally, the harmonics about the output voltages of their methods are compared using the harmonic distortion factor (HDF).

  • PDF

Modulation, Harmonic Analysis, and Balancing Control for a New Modular Multilevel Converter

  • Li, Binbin;Zhang, Yi;Wang, Gaolin;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.163-172
    • /
    • 2016
  • The modular multilevel converter (MMC) has been receiving increased attentions in recent years. The new modular multilevel converter is a derivative topology from the traditional MMC in which the number of sub-modules (SMs) necessitated by each phase can be reduced by one. This paper presents a phase-shifted carrier pulse-width modulation (PSC-PWM) for the new MMC with an optimal phase-shifted angle to suppress the harmonics of the output voltage. Further, the harmonic features when the capacitor voltage of the middle SM is selected as two different values are also investigated. Moreover, in order to avoid introducing an unnecessary dc offset current at the ac terminals of the new MMC, a novel capacitor voltage balancing scheme is proposed by adjusting the amplitude of the reference signals rather than the offset. Finally, the validity and effectiveness of the proposed modulation and balancing schemes have been verified by experimental results based on a three-phase prototype of the new MMC.

A Selective Voltage Balancing Scheme of a Modular Multilevel DC-DC Converter for Solid-State Transformers (반도체 변압기용 모듈형 멀티레벨 DC-DC 컨버터의 선택적인 전압 균형 제어)

  • Lee, Eui-Jae;Kim, Seok-Min;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.652-658
    • /
    • 2019
  • This paper proposes the selective voltage balancing scheme of a modular multilevel DC-DC converter for solid-state transformers. In general, the sub-module capacitor voltage can be controlled uniformly by individual feedback controllers, however computation time increases according to the number of modules. The voltage balance control scheme in this paper can reduce the computation time by selecting and controlling sub-module of maximum/minimum voltage momentarily. The performance of the proposed selective voltage balancing scheme is verified by simulation.