• Title/Summary/Keyword: Balancing Of Plant

Search Result 51, Processing Time 0.023 seconds

A Study of High-speed Vacuum Balancing for 38M6 Recycle Compressor (38M6 리사이클 Compressor의 고속진동 밸런싱 사례연구)

  • 이동환;김병옥;이안성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.657-662
    • /
    • 2004
  • This paper presented is a case study of a real compressor rotor of a refinery plant for high speed balancing of flexible rotor. The rotor was tested in the expert high-speed balancing facility established by KIMM at early 2004. The capability of the facility can reach 40000rpm in rotation speed and 8 ton in rotor weight for high-speed balancing. The facility performs multi-plane at-speed balancing using influence coefficient from the vibration data measured at two pedestals. The test rotor had exceeded permissible criteria of vibration at initial run. But by processing a low-speed balancing at 1000 rpm and six trial run trying to calculate influence coefficient of rotor to the range of operating speed, the final result of high-speed balancing revealed a remarkable reduce of vibration at pedestal of the rotor.

  • PDF

Analysis of High Vibration in Nuclear Turbine-Generator (원자력 발전소 터빈-발전기 고진동 저감에 대한 고찰)

  • Lee, Woo-Kwang;Ko, Woo-Sig;Kim, Kye-Yean;Koo, Jae-Raeyang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.46-50
    • /
    • 2007
  • The nuclear power plant's turbine-generator system had been suffered form some problems, such as high shaft vibration, generator casing crack, stator coil water leakage, high $H_2$ gas consumption rate. Those kinds of problems were related to high vibration. So nuclear plant decided to replace generator in order to reduce rotor high vibration and high thermal sensitivity. A series of effort to reduce turbine-generator vibration was carried out as followings, first of all, replacement of generator, analysis of turbine-generator vibration, LP B rotor shop balancing, improvement of LP B/Gen coupling run-out, improvement of Generator basement and field balancing. Finally the nuclear turbine-generator's shaft vibration was reduced below $60{\mu}m$ from over $200{\mu}m$ which is very excellent vibration in nuclear turbine-generator in Korea.

  • PDF

Prediction of 2X Vibration of a Generator Rotor with Asymmetric Shaft Stiffness (비대칭 축 강성을 가지는 발전기 회전자의 2X 진동 예측)

  • Park, C.H.;Kim, Y.C.;Cho, K.G.;Yang, B.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.16-19
    • /
    • 2007
  • The large generator rotor used in fossil power plant has the possibility of high 2X vibration due to asymmetric shaft stiffness. The generator rotor is machined into pole faces to reduce stiffness difference and then is tested through 2X vibration measurement when the balancing works are performed in the balancing shop. However, there are many cases of large difference values between 2X vibration in the balancing shop and 2X vibration in site. This paper presents a new method to estimate 2X vibration in site with more accuracy and applied for the retrofit of a fossil 400 MW class deteriorated generator. It shows that the new generator rotor is manufactured with a good 2X vibration characteristics and is operated in a low 2X vibration level although the generator rotor has high 2X vibration in the balancing shop.

  • PDF

Abnormal Vibration of the Steam Turbine Shaft in 500 MW Class Coal-fired Power Plants (500 MW급 석탄화력발전소 증기터빈축 이상진동의 해결방안)

  • Ahn, Kwang-Min;Yoo, HoSeon
    • Plant Journal
    • /
    • v.13 no.1
    • /
    • pp.30-36
    • /
    • 2017
  • During the start-up of 500 MW class coal-fired power plant, abnormal shaft vibration was occurred on bearings installed on both side of high and intermediate pressure steam turbine. Shaft vibration was analyzed to investigate the reason and find the resolution, based on well-known theory in this study. Typical vibration characteristics which occur when rotating parts contact with stationary parts were observed at the analysis of frequency, amplitude and phase angle. The reason of abnormal vibration was assumed to be rub and internal parts wear was observed during repair period. As a result of applying low speed turning and balancing for resolution of abnormal vibration, balancing was more effective for rub removal. So balancing could be excellent resolution in the case of abnormal vibration which is similar to this study.

  • PDF

Analysis of Rotordynamic Design Characteristics and Vibration Reduction of an Air Turbo Compressor for Oxygen Plant (산소공장 공기터보압축기(ATC)의 회전체동역학 설계특성 분석 및 진동저감)

  • Kim, Byung-Ok;Lee, An-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.3
    • /
    • pp.43-48
    • /
    • 2010
  • In this study rotordynamic characteristics of an air turbo-compressor (ATC) used in oxygen plant are analyzed and its operating-speed balancing is performed to solve the vibration trouble caused by rotor unbalance. Three dimensional model of the ATC rotor is completed and then analytical FE (finite element) model, which is verified by experimental modal testing, is developed. A rotordynamic analysis includes the critical map, Campbell diagram, and unbalance response, especially considering the pedestal housings supporting tilting pad bearings. A test run of operating-speed, using tilting-pad bearing of actual use, showed that the vibration level increased very sharply as approaching the rated speed. The operating-speed balancing specified by API 684 was carried out by using influence coefficient method. The results showed that the vibrations at the bearing pedestal housings represented good levels of 0.1 mm/s. From the test run and operating-speed balancing, the analytical results, that is, critical speeds are in good agreement with the test results and unbalance responses introducing the correction masses are similar to the as-is test responses in its aspect.

A Study on the Position Control of a Ball-Balancing System (볼 밸런싱 시스템의 위치 제어에 관한 연구)

  • Choi, Soo-Young;Choi, Goon-Ho;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.712-714
    • /
    • 1999
  • Ball-balancing control systems are ideal to demonstrate the design and hardware implementation Procedures of optimal controllers based on modern control theory. This paper presents the design of an $H_2$ optimal controller based on the generalized plant model of the ball-balancing system. The problem of balancing a metal ball on the midpoint of a beam is ultimately related to a regulating problem. So, the designed controller is correspond to this problem. The controller was experimented by DSP(digital signal processing) equipments and simulated by MATLAB. The performance of controller was verified through the experiments.

  • PDF

Desing of a Controller for Rod Balancing System

  • Kim, Sang-Gyu;An, Jung-Hun;Hong, Sung-Hun;Kang, Mun-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.66.4-66
    • /
    • 2001
  • In this paper we have fabricated the two-dimensional Rod Balancing System which expands conventional one-dimensional inverted pendulum control system and designed its controller. The X-axis cart and Y-axis bar of the Rod Balancing System, which is composed of X-Y table, are actuated through timing belt by each of two geared DC motors, and the rod mounted on a X-axis cart can be brought to the desired position and maintained in a vertical position by motor-control. For the control of the Rod Balancing System, we used a fuzzy logic controller that is an approach to systems control when the exact mathematical model of the plant is unknown or the mathematical model is too complex to understand.

  • PDF

A Study on the Configuration of BOP and Implementation of BMS Function for VRFB (VRFB를 위한 BOP 구성 및 BMS 기능구현에 관한 연구)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Chung, Dong-Hwa;Park, Byung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.74-83
    • /
    • 2014
  • This paper proposes a study on the configuration of balancing of plant(BOP) and implementation of battery management system(BMS) functions for vanadium redox flow battery(VRFB) and propose a method consists of sensor and required design specifications BOP system configuration. And it proposes an method of the functions implementation and control algorithm of the BMS for flow battery. Functions of BMS include temperature control, the charge and discharge control, flow control, level control, state of charge(SOC) estimation and a battery protection through the sensor signal of BOP. Functions of BMS is implemented by the sensor signal, so it is recognized as a very important factor measurement accuracy of the data. Therefore, measuring a mechanical signal(flow rate, temperature, level) through the BOP test model, and the measuring an electrical signal(cell voltage, stack voltage and stack current) through the VRFB charge-discharge system and analyzes the precision of data in this paper. Also it shows a good charge-discharge test results by the SOC estimation algorithm of VRFB. Proposed BOP configuration and BMS functions implementation can be used as a reference indicator for VRFB system design.

A CONSTRUCTION METHOD OF MULTIPLE CONTROL SYSTEMS USING PARTIAL KNOWLEDGE UPON SYSTEM DYNAMICS

  • Yoshisara, Ikuo;Indaba, Masaaki;Aoyama, Tomoo;Yasunaga, Moritoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.73-78
    • /
    • 1999
  • This paper presents an effective construction method of adaptive multiple control systems utilizing some knowledge upon the plants. The adaptive multiple control system operates plants un-der widely changing environmental conditions. The adaptive multiple control system is composed of a family of candidate controllers together with a supervisor. The system does not require any identification schemes of environmental conditions. Monitoring outputs of the plant, the supervisor switches from one candidate controller to another, The basic ideas of adaptation are as follows: (1)each candidate controller is prepared for each environmental condition in advance; (2)the supervise. applies a sequence of speculative controls to the plant with candidate controllers just after the start of control or just after the detection of a change in the environmental condition. Each candidate controller can keep the system stable during one-step period of the speculative control and the most appropriate candidate controller for the environmental condition to which the system is exposed can be selected before the last trial of speculative control step comes to an end. We proposed a construction method of adaptive multiple control system without any knowledge of plant dynamics and applied the method to a cart-pole balancing problem and a vehicle anti skid braking system. In real applications, as we can often easily obtain a piece of knowledge upon plant dynamics beforehand, we intend to extend the method such that multiple control systems can be efficiently designed using the knowledge. We apply the new idea to the cart-pole balancing problem with variable length of the pole. The simulation experiments lead us to the conclusion that the new attempt can reduce the manpower to design the candidate controllers for adaptive multiple control systems.

  • PDF

Study on the Vibration Control Using Balance Weight for W/V-type Air Compressor (W/V형 공기압축기의 불평형진동 저감에 관한연구)

  • 정하돈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.686-692
    • /
    • 1999
  • For the purpose of increasing compressed air pressure higher than 30bar lightening weight and decreasing installation area of air compressor used for shipboard and industrial power plant it is necessary to arrange its cylinders as a w-type or v-type construction multi-stage compression pro-cess more than two stages and to increase its operation speed higher than 1200rpm In this recip-rocating type air compressor operated in high speed having a crank mechanism and complicate cylinder arrangement there is a vibration problems which can be solved by balancing its recipro-cating parts with balance weight and approriate arranging of cylinder's arrangement angles.

  • PDF