• 제목/요약/키워드: Balance of Plant Design

검색결과 89건 처리시간 0.026초

스팀 동력 플랜트의 엑서지 및 열경제학적 해석 (Exergetic and Thermoeconomic Analysis of Steam Power Plant)

  • 김덕진;정정열;곽호영
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.76-83
    • /
    • 2003
  • Exergetic and thermoeconomic analyses were performed fer a 137-MW steam power plant. In these analyses, mass and energy conservation laws were applied to each component of the system. Quantitative balance of the exergy and exergetic cost for each component, and for the whole system was carefully considered. The exergo-economic model, which represented the productive structure of the system was used to visualize the cost formation process and the productive interaction between components. The computer program developed in this study can determine production costs of power plants, such as gas-and steam-turbines plants and gas-turbine cogeneration plants. The program can also be used to study plant characteristics, namely, thermodynamic performance and sensitivity to changes in process and/or component design variables.

H infinity Controller Design for the Reactor Power Control System

  • Lee, Yoon-Joon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 추계학술발표회논문집(1)
    • /
    • pp.79-84
    • /
    • 1996
  • The robust controller for the nuclear reactor power control system is designed. The reactor model is set up by use of the point kinetics equations and the singly lumped energy balance equations. Since the model is different from the actual plant, the controller which makes the system robust is necessary. The perturbation of the actual plant is investigated with respect to several possible sources of uncertainty. Then the overall system is configured into the two port model and the $H_{\infty}$ controller is designed. The loop shaping and the permissible control rod speed are considered as the design constraints. The designed $H_{\infty}$ controller provides the sufficient margins for the robustness, and the system output as well as the control input satisfy their relevant requirements.

  • PDF

유연구조물의 최소중량설계에 관한 연구 (A Study on the Minimum Weight Design for Flexible Structure)

  • 박중현
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.153-159
    • /
    • 2004
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken.

순환 유동상 연소로 설계 인자 및 하부 연소율에 따른 설계 영향 평가 (Design Impact evaluation through CFB Boiler Design Parameter and Lower Furnace Fraction of Combustion Heat)

  • 양종인;김태현;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.41-42
    • /
    • 2012
  • Circulating fludized bed(CFB) furnace which can use a variety of low-grade fuels because of high heat capacity and good mixing characteristic in its furnace have turned out to be effective system. There is no many research to design CFB boiler in korea. thus, we feel necessity to research design method. So far accurate hydrodynamics and combustion mechanism information in CFB furnace has been lacked. Therefore, design method that derives design parameter is being made. so, this study is aimed to derive design parameters of CFB furnace from heat and mass balance by using existing plant data.

  • PDF

오프그리드용 풍력-연료전지 하이브리드 시스템 개발 (Development of WT-FC Hybrid System for Off-Grid)

  • 최종필;김광수;박내춘;김상훈;김병희;유능수
    • 신재생에너지
    • /
    • 제3권2호
    • /
    • pp.60-67
    • /
    • 2007
  • This paper describes the design and integration of the wind-fuel cell hybrid system. The hybrid system components included a wind turbine, an electrolyzer (for generation of H2), a PEMFC (Proton Exchange Membrane Fuel Cell), hydrogen storage tank and BOP (Balance of Plant) system. The energy input is entirely provided by a wind turbine. A DC-DC converter controls the power input to the electrolyzer, which produces hydrogen and oxygen form water. The hydrogen used the fuel for the PEMFC. Hydrogen may be produced and stored in high pressure tank by hydrogen gas booster system. Wind conditions are changing with time of day, season and year. So, wind power is a variable energy source. The main purpose with these WT-FC hybrid system is to store hydrogen by electrolysis of water when wind conditions are good and release the stored hydrog en to supply the fuelcell when wind is low.

  • PDF

컨테이너 패키지형 그린수소 수전해 생산 시스템의 수소 누출 특성에 관한 환기 성능 연구 (Ventilation Performance Study on Hydrogen Leakage Characteristics of Container Packaged Water Electrolysis Production System)

  • 권수인;진병석;이치우;엄성용;최경민
    • 한국수소및신에너지학회논문집
    • /
    • 제35권3호
    • /
    • pp.324-335
    • /
    • 2024
  • The container package type sealed water electrolysis production system installs mechanical balance of plant and electrical balance of plant as an integrated unit to enable independent operation within the package module. The auxiliary equipment required to operate the water electrolysis system must be integrated to reduce the installation area and shorten the installation time. At this time, as leak risk factors are placed in a dense space, when a hydrogen gas leak accident occurs, it can have a mutual influence on other adjacent facilities, so it contains various risk factors. In this study, when a gas leak occurs in a container packaged water electrolysis system, possible sources of leakage in the system according to the KS C IEC 60079-10-1:2015 and KGS GC101 standards were identified, and the leak rate and leak characteristics were calculated. did. The hazardous area and its range were calculated according to ventilation and dilution characteristics. In order to optimize ventilation characteristics, design of experiment was used to analyze the influence to evaluate the adequacy of ventilation, and overseas ventilation standards were analyzed and compared. In addition, the optimal ventilation structure and characteristics of the container packaged water electrolysis system were presented according to the results of the experimental design method.

화력발전소 과열기 모델링 및 파라미터 추정 (Modeling and Parameter Estimation of Superheater in Thermal Power Plant)

  • 신용환;이형란;신휘범
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.600-601
    • /
    • 2010
  • This paper presents the superheater dynamic modeling and parameter estimation for the thermal plant boiler. The temperature control is closely related to the power plant efficiency and boiler life. The dynamic modeling of the superheater and desuperheater is essentially needed and developed by using the heat balance principle. The simulated model outputs are well matched with the actual ones. It is expected that the proposed model is useful for the temperature controller design.

  • PDF

300MW급 IGCC 가스화 플랜트의 엔지니어링 현황 및 가스화 블록 성능예측 (Engineering Status of Gasification Plant in 300MW IGCC and Performance Prediction of Gasification Block)

  • 김유석;김봉근;백민수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.130.1-130.1
    • /
    • 2010
  • 미국과 유럽에서는 이미 10여 년 전부터 250MW급 이상의 대용량 석탄IGCC 플랜트를 상업운전 하고 있으며, 일본과 중국을 비롯한 아시아에서도 대용량 플랜트를 시운전하고 있거나 건설 중에 있다. 한국에서는 제4차 전력수급계획에 의거 태안화력 부지 내에 300MW급 IGCC 플랜트 건설을 추진 중이며, 두산중공업은 '10년 상반기에 IGCC 가스화 플랜트에 대한 FEED 설계 (Front-Eng Engineering Design)를 완료하였다. 그 과정 중 설계조건에 의한 기본 엔지니어링 사항과 석탄 가스화 플랜트에 대한 성능예측 결과를 본 연구에서 소개한다. 가스화 플랜트의 엔지니어링은 가스화 블록과 가스정제 블록으로 구분하여 수행하였다. Process Data를 이용하여 PFD Development, P&ID Generation, Equipment Specification 개발, HAZOP 수행, Architecture Engineering 등의 순으로 FEED 설계를 진행하였다. BOD (Basis of Design)를 기준으로 운전조건별 Heat & Mass Balance와 Process Flow를 재검토하고 각 기기별 운전개념을 반영하여 P&ID를 개발하였다. 그리고 배관, 전기 및 제어에 대한 각종 Diagram 개발과 HSE (Health, Safety and Environment) 관련 설계를 수행하였다. IGCC 1호기의 엔지니어링 수행과 함께 Next 호기 자체설계 역량 확보를 위해 두산중공업은 'DIGITs'로 명명된 개념기본설계 Tool을 개발하고 있다. DIGITs는 공정모델링, 단위기기 개념설계, 공정구성 (Process Configuration) 및 종합 Database Package 형태로 구성된다. DIGITs에 의한 계산 결과 공정사 Process Data 기준시 가스화 블록 출구에서 Syngas HHV와 Syngas 현열은 각각 약 $636MW_{th}$와 약 $18MW_{th}$로, Plant 설계조건 $630MW_{th}$를 만족하는 것으로 예측되었다. 향후 DIGITs는 가스정제 블록 및 주변 BOP 설비 등과 연계한 종합 개념기본설계 Tool로써 개발 진행 중이다.

  • PDF

전기유압식 스프링복귀 액추에이터 정특성 (Static Characteristics of Electro-Hydraulic Spring Return Actuator)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권2호
    • /
    • pp.8-14
    • /
    • 2012
  • Electro-hydraulic spring return actuator(ESRA) is utilized for air conditioning facilities in a nuclear power plant. It features self-contained, hydraulic power that is integrally coupled to a single acting hydraulic cylinder and provides efficient and precise linear control of valves as well as return of the actuator to the de-energized position upon loss of power. In this paper, the algebraic equations of ESRA at steady-state have been developed for the analysis of static characteristics that includes control pressure and valve displacement of pressure reducing valve, flow force on flapper as well as its displacement over the entire operating range. Also, the effect of external load on piston deviation is investigated in terms of linear system analysis. The results of static characteristics show the unique feature of force balance mechanism and can be applied to the stable self-controlled mechanical system design of ESAR.

자기력 부상 시스템인 평형빔의 Integral Sliding Mode 제어기 : 이론과 실험적 평가 (Integral Sliding Mode Controller for Magnetically Suspended Balance Beam: Theory and Experimental Evaluation)

  • 이준호;이정석;박영수;이재훈;이기서
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권9호
    • /
    • pp.526-537
    • /
    • 2000
  • This paper deals with a sliding mode controller with integral compensation in a magnetic suspension system The control scheme comprises an integral controller which is designed for achieving zero steady-steate error under step disturbance input and a sliding mode controller which is designed for enhancing robustness under plant parametric variations. A procedure is developed for determining the coefficients of the switching plane and integral control gain such that the overall closed-loop system has stable eigenvalues. A proper continuous design signal is introduced to overcome the chattering problem. The performance of a magnetically suspended balance beam using the proposed integral sliding mode controller is illustrated. Simulation and experimental results also show that the proposed method is effective under the external step disturbance and input channel parametric variations.

  • PDF