• 제목/요약/키워드: Bag-of-feature

검색결과 58건 처리시간 0.029초

Text-independent Speaker Identification Using Soft Bag-of-Words Feature Representation

  • Jiang, Shuangshuang;Frigui, Hichem;Calhoun, Aaron W.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권4호
    • /
    • pp.240-248
    • /
    • 2014
  • We present a robust speaker identification algorithm that uses novel features based on soft bag-of-word representation and a simple Naive Bayes classifier. The bag-of-words (BoW) based histogram feature descriptor is typically constructed by summarizing and identifying representative prototypes from low-level spectral features extracted from training data. In this paper, we define a generalization of the standard BoW. In particular, we define three types of BoW that are based on crisp voting, fuzzy memberships, and possibilistic memberships. We analyze our mapping with three common classifiers: Naive Bayes classifier (NB); K-nearest neighbor classifier (KNN); and support vector machines (SVM). The proposed algorithms are evaluated using large datasets that simulate medical crises. We show that the proposed soft bag-of-words feature representation approach achieves a significant improvement when compared to the state-of-art methods.

Random Forest 분류기와 Bag-of-Feature 특징 히스토그램을 이용한 의료영상 자동 분류 및 검색 (Medical Image Classification and Retrieval Using BoF Feature Histogram with Random Forest Classifier)

  • 손정은;고병철;남재열
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권4호
    • /
    • pp.273-280
    • /
    • 2013
  • 본 논문에서는 의료영상의 특성을 반영하여 픽셀 그래디언트의 방향 값을 특징으로 하는 OCS-LBP (Oriented Center Symmetric Local Binary Patterns) 특징을 개발하고 BoF(Bag-of-Feature)와 Random Forest 분류기를 이용한 영상 검색 방법을 제안한다. 학습영상에서 추출된 특징 값은 code book 으로 군집화 되고, 각 영상들은 code book을 통해 의미 있는 새로운 차원인 BoF특징으로 변환된다. 이렇게 추출된 BoF특징은 Random Forest 분류기에 적용되고 학습된 분류기에 의해 유사한 특성을 갖는 N개의 클래스별로 분류되게 된다. 질의 영상이 입력되면 동일한 OCS-LBP특징이 추출되고 code book을 통해 BoF특징이 추출된다. 전통적인 내용기반 영상검색과는 다르게, 본 논문에서는 질의 영상에서 추출된 BoF특징이 학습된 Random Forest에 적용되어 가장 유사한 K-근접 이웃 (K-nearest neighbor) 클래스들을 선택하고 선택된 클래스들에 포함된 영상들에 대해서만 질의 영상과의 BoF 유사도 측정을 통해 최종 유사한 영상을 검색하게 된다. 실험결과에서 본 논문에서 제안하는 방법은 빠르고 우수한 검색 성능을 보여 주었다.

특징, 색상 및 텍스처 정보의 가공을 이용한 Bag of Visual Words 이미지 자동 분류 (Improved Bag of Visual Words Image Classification Using the Process of Feature, Color and Texture Information)

  • 박찬혁;권혁신;강석훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 추계학술대회
    • /
    • pp.79-82
    • /
    • 2015
  • 이미지를 분류하고 검색하는 기술(Image retrieval)중 하나인 Bag of visual words(BoVW)는 특징점(feature point)을 이용하는 방법으로 데이터베이스의 이미지 특징벡터들의 분포를 통해 쿼리 이미지를 자동으로 분류하고 검색해주는 시스템이다. Words를 구성하는데 특징벡터만을 이용하는 기존의 방법은 이용자가 원하지 않는 이미지를 검색하거나 분류할 수 있다. 이러한 단점을 해결하기 위해 특징벡터뿐만 아니라 이미지의 전체적인 분위기를 표현할 수 있는 색상정보나 반복되는 패턴 정보를 표현할 수 있는 텍스처 정보를 Words를 구성하는데 포함시킴으로서 다양한 검색을 가능하게 한다. 실험 부분에서는 특징정보만을 가진 words를 이용해 이미지를 분류한 결과와 색상정보와 텍스처 정보가 추가된 words를 가지고 이미지를 분류한 결과를 비교하였고 새로운 방법은 80~90%의 정확도를 나타내었다.

  • PDF

Exploiting Chaotic Feature Vector for Dynamic Textures Recognition

  • Wang, Yong;Hu, Shiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권11호
    • /
    • pp.4137-4152
    • /
    • 2014
  • This paper investigates the description ability of chaotic feature vector to dynamic textures. First a chaotic feature and other features are calculated from each pixel intensity series. Then these features are combined to a chaotic feature vector. Therefore a video is modeled as a feature vector matrix. Next by the aid of bag of words framework, we explore the representation ability of the proposed chaotic feature vector. Finally we investigate recognition rate between different combinations of chaotic features. Experimental results show the merit of chaotic feature vector for pixel intensity series representation.

Bag-of-Feature 특징과 랜덤 포리스트를 이용한 의료영상 검색 기법 (Medical Image Retrieval using Bag-of-Feature and Random Forest Classifier)

  • 손정은;곽준영;고병철;남재열
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.601-603
    • /
    • 2012
  • 본 논문에서는 의료영상의 특성을 반영하여 영상의 그래디언트 방향 값을 특징으로 하는 Oriented Center Symmetric Local Binary Patterns (OCS-LBP) 특징을 개발하고 추출된 특징 값에 대해 차원을 줄이고 의미 있는 특징 단위로 재 생성하기 위해 Bag-of-Feature (BoF)를 적용하였다. 검색을 위해서는 기존의 영상 검색 방법과는 다르게, 학습 영상을 이용하여 랜덤 포리스트 (Random Forest)를 사전에 학습시켜 데이터베이스 영상을 N 개의 클래스로 자동 분류 시키고, 질의로 입력된 영상을 같은 방법으로 랜덤 포리스트에 적용하여 상위 확률 값을 갖는 2 개의 클래스에서만 K-nearest neighbor 방법으로 유사 영상을 검색결과로 제시하는 새로운 영상검색 방법을 제시하였다. 실험결과에서 본 논문의 우수성을 증명하기 위해 일반적인 유사성 측정 방법과 랜덤 포리스트를 이용한 방법의 검색 성능 및 시간을 비교하였고, 검색 성능과 시간 면에서 상대적으로 매우 우수한 성능을 보여줌을 증명하였다.

Machine Printed and Handwritten Text Discrimination in Korean Document Images

  • Trieu, Son Tung;Lee, Guee Sang
    • 스마트미디어저널
    • /
    • 제5권3호
    • /
    • pp.30-34
    • /
    • 2016
  • Nowadays, there are a lot of Korean documents, which often need to be identified in one of printed or handwritten text. Early methods for the identification use structural features, which can be simple and easy to apply to text of a specific font, but its performance depends on the font type and characteristics of the text. Recently, the bag-of-words model has been used for the identification, which can be invariant to changes in font size, distortions or modifications to the text. The method based on bag-of-words model includes three steps: word segmentation using connected component grouping, feature extraction, and finally classification using SVM(Support Vector Machine). In this paper, bag-of-words model based method is proposed using SURF(Speeded Up Robust Feature) for the identification of machine printed and handwritten text in Korean documents. The experiment shows that the proposed method outperforms methods based on structural features.

백제 문화콘텐츠의 현대적 활용을 위한 가방 디자인 개발 - 레이저커팅 기법을 중심으로- (Development of modern bag design using cultural content from Baekje - Focusing on laser-cutting techniques -)

  • 하승연
    • 복식문화연구
    • /
    • 제28권6호
    • /
    • pp.738-754
    • /
    • 2020
  • As a cultural feature of, the relics of the Royal Tomb of King Muryeong are suitable design content for applying with sophisticated production and delicate molding laser cutting techniques. The purpose of this study is to develop modern bag designs using relics of the Royal Tomb of King Muryeong of Baekje using laser-cutting techniques. First, the historical background and meaning of Baekje's cultural content were explored. Second, the principle of laser-cutting techniques were explored, laser-cutting techniques applied to modern fashion and bag design were examined, and bag design characteristics were analyzed. Third, based on prior research, the criteria for the development of bag design, from which eight bag design were developed that combine modern popularity and functionality utilizing Baekje cultural content and using laser-cutting techniques to apply the textile design developed by researchers in 2013 (modified to match laser-cutting techniques). The research results show that bag were clutch, tote, shoulder, and mini. Gold, silver, brown, beige, and navy colors were arranged, based on black/white contrast. Cow, lambskin, washed snakeskin, mesh, and Saffiano leather were used. For the pattern-applying technique, this study showed that a new digital technique, which is laser-cutting techniques could be combined with contemporary bag designs. Moreover, a bag design was developed that has a modern sense and functionality as well as Korean formativeness, which is significant.

Word2vec을 이용한 오피니언 마이닝 성과분석 연구 (Performance Analysis of Opinion Mining using Word2vec)

  • 어균선;이건창
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.7-8
    • /
    • 2018
  • 본 연구에서는 Word2vec을 머신러닝 분류기를 이용해 효율적인 오피니언 마이닝 방법을 제안한다. 본 연구의 목적을 위해 BOW(Bag-of-Words) 방법과 Word2vec방법을 이용해 속성 셋을 구성했다. 구성된 속성 셋은 Decision tree, Logistic regression, Support vector machine, Random forest를 이용해 오피니언 마이닝을 수행했다. 연구 결과, Word2vec 방법과 RF분류기가 가장 높은 정확도를 나타냈다. 그리고 Word2vec 방법이 BOW방법 보다 각 분류기에서 높은 성능을 나타냈다.

  • PDF

비디오 감시 응용에서 확장된 기술자를 이용한 물체 검출과 분류 (Object Detection and Classification Using Extended Descriptors for Video Surveillance Applications)

  • 모하마드 카이룰 이슬람;파라 자한;민재홍;백중환
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.12-20
    • /
    • 2011
  • 본 논문은 비디오 감시 장치에 사용되는 효율적인 물체 검출 및 분류 알고리즘을 제안한다. 이전 연구는 주로 Scale Invariant Feature Transform (SIFT)나 Speeded Up Robust Feature (SURF)와 같은 특정 형태의 특징을 이용해 물체를 검출하거나 분류하였다. 본 논문에서는 물체 검출 및 분류에 상호 작용하는 알고리즘을 제안한다. 이는 로컬 패치들로부터 얻어지는 텍스쳐나 컬러 분포 같은 서로 다른 특성을 갖는 특징값을 이용해 물체의 검출 및 분류율을 높인다. 물체 검출에는 특징점들의 공간적인 클러스터링을, 이미지 표현이나 분류에는 Bag of Words 모델과 Naive Bayes 분류기를 사용한다. 실험을 통해 제안한 기법이 로컬 기술자를 사용한 물체 분류기법보다 우수한 성능을 나타냄을 보인다.

Hardware Accelerated Design on Bag of Words Classification Algorithm

  • Lee, Chang-yong;Lee, Ji-yong;Lee, Yong-hwan
    • Journal of Platform Technology
    • /
    • 제6권4호
    • /
    • pp.26-33
    • /
    • 2018
  • In this paper, we propose an image retrieval algorithm for real-time processing and design it as hardware. The proposed method is based on the classification of BoWs(Bag of Words) algorithm and proposes an image search algorithm using bit stream. K-fold cross validation is used for the verification of the algorithm. Data is classified into seven classes, each class has seven images and a total of 49 images are tested. The test has two kinds of accuracy measurement and speed measurement. The accuracy of the image classification was 86.2% for the BoWs algorithm and 83.7% the proposed hardware-accelerated software implementation algorithm, and the BoWs algorithm was 2.5% higher. The image retrieval processing speed of BoWs is 7.89s and our algorithm is 1.55s. Our algorithm is 5.09 times faster than BoWs algorithm. The algorithm is largely divided into software and hardware parts. In the software structure, C-language is used. The Scale Invariant Feature Transform algorithm is used to extract feature points that are invariant to size and rotation from the image. Bit streams are generated from the extracted feature point. In the hardware architecture, the proposed image retrieval algorithm is written in Verilog HDL and designed and verified by FPGA and Design Compiler. The generated bit streams are stored, the clustering step is performed, and a searcher image databases or an input image databases are generated and matched. Using the proposed algorithm, we can improve convenience and satisfaction of the user in terms of speed if we search using database matching method which represents each object.