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Abstract 
 

This paper investigates the description ability of chaotic feature vector to dynamic textures. 

First a chaotic feature and other features are calculated from each pixel intensity series. Then 

these features are combined to a chaotic feature vector. Therefore a video is modeled as a 

feature vector matrix. Next by the aid of bag of words framework, we explore the 

representation ability of the proposed chaotic feature vector. Finally we investigate 

recognition rate between different combinations of chaotic features. Experimental results 

show the merit of chaotic feature vector for pixel intensity series representation. 
 

 

Keywords: Chaotic feature vector, pixel intensity series, bag of words, dynamic textures 

recognition  
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1. Introduction 

Dynamic textures (DTs) are sequences of images of moving scenes that exhibit certain 

stationary properties in time [1], such as smoke floating in the wind, boiling water and so on. 

Great attention has been paid since the potential application of DTs, e.g. remote surveillance 

of natural disaster. 

Fig. 1(a) illustrates two types of DTs, water and sea. From Fig. 1(a) people can not figure 

out the size of the textures is 10 square cm large or 10 square m, without something or some 

tool next to it. This is usually called self-similarity. That is, the objects have the same structure 

at all scales. The natural scenes such as coastline possess the common characteristic of 

self-similarity. Fig. 1 (b) illustrates one pixel intensity series in the DT of sea and the position 

is (5, 5). The x-axis is the frame number and the y-axis is the value of pixel intensity. Pixel 

intensity as an image feature has been achieved great success [2, 3, 28, 29]. DTs are image 

sequences, thus pixel intensity series should be paid attention to. The popular methods in DTs 

recognition is modeling a DT as linear dynamic systems (LDSs) [1]. In DTs analysis, the 

self-similarity property leads each pixel intensity series possessing fractal property. Stationary 

property indicates that similarity exists among pixel intensity series. Chaos theory is 

developed to solve the fractal problems and is introduced in computer vision recently [4, 5, 6]. 

Chaotic features can be extracted from time series and have achieved great success in action 

recognition, dynamic scene recognition and anomaly detection. Motivated by these work, we 

explore the representation ability of chaotic feature vecotr in DTs.  
 

 
Fig. 1. One frame from DTs 

 

In this paper, each pixel intensity series is used to compute the chaotic feature and other 

features. These sets of features are then combined to a feature vector, named chaotic feature 

vector. The chaotic feature vector is used to represent the pixel intensity series in video. A DT 

video can be represented by a feature vector matrix. Then we use the well-known bag of words 

(BoWs) approach which has been adopted by many computer vision researchers [7, 8]. A 

codebook is learned by clustering all the chaotic feature vectors in the training feature vector 

matrix. During clustering, each chaotic feature vector is assigned to the codeword that is 

closest to it in terms of Euclidean distance. These representative chaotic feature vectors are 
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called codewords in the context of BoWs approach. After the generation of the codebook, each 

feature vector matrix is represented by a histogram based on chaotic feature vectors. 

The rest of the paper is organized as follows: Section 2 discusses related work. Section 3 

describes the chaotic feature vector used in our paper. Section 4 demonstrates the framework 

of our approach in the analysis of DTs recognition. Experimental results are presented in 

section 5. Section 6 contains conclusions. 

2. Related Work  

There exists a rich literature for DTs recognition. Traditional image based approach based on 

frame-to-frame estimation to extract optical flow features [9, 10] which are computation 

efficient and natural way to depict the local DTs. The main drawback of this approach is the 

flow features (e.g. optical flow) are computed based on assumption of local smoothness and 

brightness constancy. The non-smoothness, discontinuities DTs are difficult to process.  

Recently, the DTs are modeled as LDSs in many work [1, 11, 12-14]. LDSs are learned by 

system identification to model DTs and classified 50 different DTs [1]. UCLA dataset is 

provided which contains 200 videos and widely used as a benchmark dataset in varies of DTs 

recognition methods. Gaussian mixture models (GMMs) of LDSs are also used to model DTs 

[12]. Then LDSs model is extended with a nonlinear observation to recognize DTs [13]. A 

probabilistic kernel is derived to describe the spatial-temporal process [14]. BoWs approach is 

used in [11] to model each DT video with LDSs. The key idea in using BoWs approach is 

codebook-based modeling of videos and each video can be considered as a bag containing 

some codewords from the codebook. However, DTs are generated by complex time varying 

dynamical systems, the LDSs model is constraint by linearly assumption that makes it 

restrictive for modeling DTs.  

Pixel intensity series is a nonlinear time series. Chaos theory is developed to deal with 

nonlinear systems [15]. To characterize the structure of pixel intensity series, it is necessary to 

reconstruct a phase space. The process of reconstructing the phase space is commonly referred 

to as embedding. Chaotic features capture the structure of the time series and are invariant 

under phase space reconstruction. Recently, several chaotic features, including Largest 

Lyapunov exponent (LLE), correlation dimension and correlation integral have been used to 

represent time series for recognition purpose. M. Perc [16] analyzes recording of human gait 

which is used to obtain reconstructed phase space and the LLE is calculated. The results 

indicate human gait possesses properties of chaotic systems. Trajectories from six landmarks 

(two hands, two feet, the head, and the body center) on human body are molded in [4] to 

reconstruct phase space. Each trajectory is then used to compute chaotic features that include 

Lyapunov exponent, correlation integral and correlation dimension. Chaotic features are 

combined to a feature vector for dynamic scene recognition [5]. Trajectories are treated as 

time series in [6]. Chaotic features are calculated to detect and locate anomalies. The successes 

of the work mentioned above motivate us to explore the representation of chaotic feature 

vector to DTs.  

The aim of this paper is to derive a representation of the DTs from the chaotic feature vector. 

This is achieved by using the concepts from chaos theory to model and analyze nonlinear 

dynamics of pixel intensity series. Different from the chaotic features mentioned above, fractal 

dimension which measures the self-similarity properties of a time series is used in our work. It 

has been used in image processing for decades [17]. Many natural senses can be modeled by 

fractal dimension and linear log power spectrum that is related to the fractal dimension exists 

in natural texture [18, 19]. A modified box counting dimension approach [17] has been 
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proposed to estimate fractal dimension for image segmentation.  

All the previous work suggests that improvement can be made by accurately modeling of 

pixel intensity series. Thus, we are interested in exploring the use of chaotic feature vector. We 

present our proposed algorithm in the following section. 

3. Chaotic Feature Vector 

In this section we present the background material related to the chaos theory. Pixel intensity 

series is a basic element of composing DTs. Hundreds and thousands of pixel intensity series 

make up DTs. The similarity among pixel intensity series leads DTs to self-similarity in each 

scale.  

 

3.1 embedding theory 
Embedding is a mapping from one dimensional space to an m-dimensional space. According 

to Taken’s theorem [20] a map exists between the original time series 

                              and a   embedding time delay version of     , i.e. the 

vector [    
        ]. These vectors are called phase-variable. Here   is embedding 

time delay [21] and m is embedding dimension [22].  

The embedding delay   is computed by mutual information algorithm [21]. First, the range 

of the time series                   is divided into equal bins.  

                 
       

          
 
   

 
                                      (1) 

where    and    denotes the probabilities that the variable    assumes a value inside the  th 

and  th bin respectively, and      is the joint probability that    is in bin   and      is in bin  . 

The first local minimum of      is chosen as the embedding delay. 

The embedding dimension d is computed by false nearest neighbors [22]. The idea of the 

algorithm is if points are sufficiently close in a reconstructed phase space, then they should 

remain close in the next. 

Given a one dimensional time series,                            for an appropriate 

embedding dimension m and embedding time delay  , the time series      can be transform to 

the m-dimensional space. 

    

    
        

      
          

      
          

    

                                            (2) 

 

3.2 Chaotic Feature 
Chaotic features are measures that quantify the properties that are invariant under 

transformations of the state space.  
 

3.2.1 Information dimension: 

The information dimension [15] is one of fractal dimension specifies information scales      

with the radius  , which defined as 

         
    

   
，                                                   (3) 

Information dimension shows the inner structure of time series in each scale. When the one 

dimensional pixel intensity series transformed to an m dimensional phase space, the 

information dimension can be used to measure the smoothness of the transformed phase space. 
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The smooth the phase space, the smaller the information dimension is. 

 

3.3. Chaotic Feature Vector 
Embedding time delay and embedding dimension are two important parameters to determine 

the geometry information in the phase space reconstruction. Information dimension depict the 

fractal information of the pixel intensity series. Mean of pixel intensity series encodes the 

value of the pixel intensity series that is important for recognition in the video. Thus, the mean 

value of pixel intensity series is included with chaotic feature in our chaotic feature vector, 

F={ , m,   , ,mean}.  

Given a W*L*T sequence, W, L and T are the width, length and time dimension of the 

sequence respectively. The chaotic feature vector of each pixel intensity series are extracted 

and the video is represented by a W*L*4 dimensional feature vector matrix. 

4. System workflow 

In order to give the quantitate result, the BoWs framework is employed. Fig. 2 illustrates 

flowchart of our work.  

In the BoWs representation, to learn the vocabulary of codewords, we consider all chaotic 

feature vector in the training data. The codebook is constructed by clustering using the 

k-means algorithm and Euclidean distance as the clustering metric. The center of each cluster 

is defined to be a codeword. Thus, each chaotic feature vector can be assigned a unique cluster 

membership, i.e., a codeword. Then, a video is encoded as a histogram of the number of 

occurrences of codewords count according to 

             
     

                                               (4) 

where         denotes the number of occurrences of chaotic feature vector    in video  .  The 

effect of the codebook size is explored in our experiments, and the results are shown in Fig. 

10. 

 
Fig. 2. Flowchart of the proposed algorithm 
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BoWs recognition framework is composed by two parts, training stage and testing stage. In 

training stage, all training feature vector matrix are clustered by k-means clustering (k = 100, 

200, …, 1000) algorithm with Euclidean metric and obtain the cluster centers, which form our 

histogram bins. The horizontal axis is the cluster center and the vertical axis is the number of 

occurrences of the chaotic feature vector. The number of the clusters is the codebook size. 

After generation of the codebook, each 4-attribute chaotic feature vector of a DT is mapped to 

a certain cluster center, which should be the nearest neighbor of that chaotic feature vector. 

After all chaotic feature vectors of a DT are mapped to the cluster centers, the DT video can be 

represented by a histogram of the codewords. The goal of the learning step is to achieve a 

model that best represents the distribution of these codewords in each category of DTs. 

In the testing stage, a feature vector matrix of an unknown video is first represented by a 

histogram of the codewords follow the steps mentioned above. Then the category model is 

found that fits best the distribution of the codewords of the unknown DTs video. 

5. Experiment 

In this section, an evaluation of the proposed method is proposed on two diverse datasets: 

newDT-10 dataset and DynTex++ dataset. In addition, the performances of different chaotic 

features combination recognition are compared. The goal of these experiments is to determine 

the representation ability of our proposed chaotic feature vector and the presence or absence of 

the effect of the features in the recognition experiment. 

 

5.1 Implementation detail 
Data set: 

We collect 16 river videos with smooth shaking with 75 frames and the dimension is reduced 

to 48*48 and combined with UCLA dataset [1, 11]. The dataset is classified to 10 classes: 

boiling water (8), fire (8), flowers (12), fountains (20), plants (108), sea (12), smoke (4), water 

(12), waterfall (16) and river (16), where the numbers denote the number of video sequences in 

the dataset. This dataset is used to test the robustness of our algorithm when DTs are taken 

under different viewpoints, scales and other unconstraint environment. The 10 classes dataset 

is called newDT-10 dataset. 

The second dataset is DynTex++ dataset [23] which contains 36 categories of different DTs 

and 100 in each category. In this dataset, there contains a total of 3600 videos which provides 

a richer benchmark. 

Fig. 3 shows examples from the newDT-10 dataset and DynTex++ dataset.  
 

 
Fig. 3. Examples from the newDT-10 dataset and DynTex++ dataset. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 11, November 2014                              4143 

Fig. 4 shows the path of pixel intensity series which are from different classes of newDT-10 

dataset evolve over time. Here, the embedding dimension is set to three for clearly show. That 

is, the transformed phase space is 3. Thus the Fig. 4 is showed in 3 dimensions. The 

coordinates in the figure is the coordinates of the transformed phase space. The real 

reconstructed phase space is more complex than the Fig. 4 shows. It shows that the paths of 

pixel intensity series in each class of DT vary greatly. The information dimension is a measure 

to quantify the smoothness of the phase space. The parameters of computing the features are 

given below. In the mutual information algorithm, the number of partitions for the time series 

is set to 100. In the false nearest neighbor algorithm, the number of nearest neighbors to 

compute is set to 50. In computing information dimension, the   is set to 0.2. 

 
Fig. 4. System state evolve over time 
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Fig. 5. Shows the histogram of chaotic feature vector in codebook size k=100. 

 

The generation of histograms using BoWs approach is shown in Fig. 5. It shows ten 

examples of testing videos from each category with their corresponding DTs histograms to 

demonstrate discrimination of the distribution of the learned DTs codewords. It is clear to see 
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DTs from each categories have different dominate peaks. For example, the peak in the boiling 

water is in the index of 30 and 80 while the peak in the fire is in the index of 40 and 100. 

Meanwhile different categories have some overlap bins. For example, the peak in fountain is 

around 20, 40, 60 and 80 and so is waterfall. That is the reason of confusing different classes. 

 

Recognition method： 

Nearest neighbor (NN) classifier is chosen as the classifier with 50% of the dataset for training 

and the rest for testing. The results reported in this paper have been averaged over 10 times. 

 

5.2 newDT-10 dataset 
We compare the performance of our approach with two baselines: single LDS approach and 

spatial temporal feature approach. Traditional methods develop features in image analysis 

(SIFT, Harris, GIST and so on) to three dimensional features in video analysis by adding time 

dimension in the features. Therefore, SIFT3D [32], Harris3D [31], spatial temporal feature 

[25], spacetime texture [30] and GIST3d are used in video analysis. We use spatial temporal 

feature as an example in our paper to compare the recognition results with our method. Spatial 

temporal feature is also used in [11] for a baseline method. In this paper, we use spatial 

temporal feature to represent these features mentioned above. These features based methods 

extract features between frames. Only information of two frames is considered. In this work, 

we treat pixel intensity series as an integral to obtain more information.  

Linear dynamic system method is a classical method in DTs recognition. And many 

methods are based on it [11-14]. LDSs model the pixel between frames as a linear dynamic 

system. While our method consider pixel intensity series as an integral and chaotic feature is 

extracted. Since most of the methods are based on the two approaches (3d feature based and 

LDSs based), we use these two methods as baseline methods. 

We briefly explain the two methods and give some implementation details. 

Baseline methods:  

Single LDS Approach [24]: In our first baseline method we model the entire DTs video using 

a single LDS. Given a testing DT video, we compute the Martin distance and Fisher distance 

between the testing LDS and each of the LDS models of the training set. Based on these 

distances, we use a NN classifier. As for the system order, we test all system orders in the 

range [2, 4, 6, 8], and consider the best results out of these as the single LDS baseline. This 

approach is identical to the one originally proposed in [24]. 

Spatial temporal feature [25]: Our second baseline method is BoWs approach. We extract 

spatial temporal features from DTs videos. And reduce the dimensionality of the feature vector 

to a 100-dimensional vector using PCA. We used the original code provided by the authors at 

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html. 

Fig. 6 shows the confusion matrix for pixel intensity series approach on the newDT-10 

dataset corresponding to the recognition rate 68.77%. Fig. 7 shows the confusion matrix for 

our proposed chaotic feature vector approach on the newDT-10 dataset corresponding to the 

recognition rate 90%. The number of codebook size is 100. Each row in the confusion matrix 

corresponds to the ground truth class, and each column corresponds to the assigned label. 
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Fig. 6. Confusion matrix of pixel intensity series approach on newDT-10 dataset. The overall 

recognition performance is 68.77%. 
 

 
 

Fig. 7. Confusion matrix of our proposed chaotic feature vector on newDT-10 dataset. The overall 

recognition performance is 90%. 
 

Boiling water class is misclassified to flowers, fountain and waterfall by using pixel 

intensity series. River class is misclassified to sea, smoke and water since the appearance is 

similar. The misclassification rate is much lower by using chaotic feature vector for boiling 

water class. For other categories, the recognition rate of using chaotic feature vector is higher 

than that of using pixel intensity series. The recognition rate of using single LDS and Spatial 

temporal feature is 63% and 78.33% respectively. 
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5.3 DynTex++ dataset 
Single LDS approach [24] is employed as baseline method. And the parameter setting is the 

same as section 5.2. 

Fig. 8 shows the confusion matrix for pixel intensity series approach on the DynTex++ 

dataset corresponding to the recognition rate 49.67%. Fig. 9 shows the confusion matrix for 

our proposed chaotic feature vector approach on the DynTex++ dataset corresponding to the 

recognition rate 64.5%. The number of codebook size is 100. The recognition rate of using 

single LDS is 47.2%. The best performance in [23] is 63.7%. 
 

 
Fig. 8. Confusion matrix of pixel intensity series approach on DynTex++ dataset. The overall 

recognition performance is 49.67%. 

 
Fig. 9. Confusion matrix of our proposed chaotic feature vector on DynTex++ dataset. The overall 

recognition performance is 64.5%. 
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5.4 Codebook size 
The number of codewords on recognition accuracy on newDT-10 dataset and DynTex++ 

dataset is illustrated in Fig. 10. The x axis is the number of codebook size and the y axis is the 

recognition rate. It shows some dependency of the recognition accuracy on the codebook size. 

And recognition accuracy is not increased as the increasing of the codebook size. ”CFV1” and 

“CFV2” stand for the recognition results of our proposed chaotic feature vector method for 

newDT-10 dataset and DynTex++ dataset respectively. ”PIS1” and “PIS2” denote the 

recognition results of pixel intensity series as feature for newDT-10 dataset and DynTex++ 

dataset respectively. In most of the time, the recognition rate of chaotic feature vector is higher 

than that of pixel intensity series. 

 

 
 

Fig. 10. Recognition performance on newDT-10 dataset and DynTex++ dataset using different 

codebook size. 

 

5.5 Feature combination 
In Fig. 11, the bar chart shows the best performance of the BoWs method for different 

combinations of features on newDT-10 dataset and DynTex++ dataset. The label on each bar 

corresponds to the feature vector used for the experiments. They are CFV = [embedding time 

delay, embedding dimension, information dimension, mean], FV2 = [embedding dimension, 

information dimension, mean], FV3 = [embedding time delay, information dimension, mean], 

FV4 = [embedding time delay, embedding dimension, mean], FV5 = [larget Lyapunov 

exponent, correlation integral, correlation dimension, variance], FV6 = [larget Lyapunov 

exponent, correlation dimension, mean], PIS = [pixel intensity series] respectively. We 

compare with the feature vector used in [4] and [6] as showed for label 5 and label 6 

respectively. 
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Fig. 11. Feature combination recognition results 

 

Our proposed chaotic feature vector performs best in all the feature vectors. The best 

recognition result of using chaotic feature vector on newDT-10 dataset and DynTex++ dataset 

are 90% and 64.5% respectively. The best recognition result of using pixel intensity series on 

newDT-10 dataset and DynTex++ dataset are 68.77% and 49.67% respectively. 

Most of the performances of feature combination are better than the pixel intensity series 

which indicate that chaotic feature vector is proper for DTs recognition. The recognition rates 

mainly belong to 70% to 80% and 50% to 60% for newDT-10 dataset and DynTex++ dataset 

respectively. Embedding time delay and embedding dimension which are important features 

for the structure of pixel intensity series. Label 2 and label 3 show that the recognition rates 

drop dramatically if we delete embedding time delay and embedding dimension. Label 1, label 

5 and label 6 show that our proposed chaotic feature vector performs better than [4] and [23]. 

This indicates that the information dimension captures the self-similarity of pixel intensity 

series. 
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A few interesting observations can be made from the experimental results: 

Pixel intensity series is longer than chaotic feature vector. It is easy to over fit when the 
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series can be smaller than a threshold. Otherwise, the distance between the two pixel intensity 

series is large. Our proposed chaotic feature vector encodes the shape and fractal properties of 

the pixel intensity series. The distance between the chaotic feature vectors of the two pixel 

intensity series is small. This is the advantage of the chaotic feature vector that is insensitive to 

the initial value of the pixel intensity series. 

In feature combination experiment results, it shows that different chaotic features represent 

different properties of time series. Information dimension is more suitable than other chaotic 

features to capture the self-similarity of pixel intensity series. There are many works in image 

classification that based on BoWs framework [33, 34]. In future, we will use the techniques in 

our work to improve the DTs recognition rate. 

Since our method based on pixel intensity series, the proposed approach is effective under 

the following conditions: first, the DT should always exist in the video and occupy the major 

area. Second, the location of the DT should be fixed. If the position of the DT changed rapidly, 

the pixel intensity series will change the structure. This work can be extended to DTs 

segmentation and DTs localization since the chaotic feature vector is an appropriate feature for 

each pixel intensity series. 

6. Conclusions  

The main contribution of this paper is the novel application of a chaotic feature vector 

representation of pixel time series to the field of DTs recognition. The chaotic feature vector 

based representation is shown to be effective and broadly applicable in a range of 

representative DTs. In empirical comparisons to alternative commonly employed features and 

state-of-the-art methods, the proposed approach has been shown to yield exceptionally strong 

performance in response to such challenges. We believe DTs in our work is an example and 

our work bridge the gap between chaos theory and engineering applications. There is more 

natural scenes that can be treated as a time series and represented by chaotic feature vector. 
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