• Title/Summary/Keyword: Bactericidal assay

Search Result 61, Processing Time 0.022 seconds

In vitro, anti-Microbial Activity of a Novel Beta-lactam Antibiotics, YH-487 (새로운 ${\beta}-lactam$계 항생물질(H-487)의 in vitro 항균활성)

  • Kang, Heui-Il;Lee, Jong-Wook;Chung, Dong-Hyo;Won, Yu-Jung
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.23-29
    • /
    • 1997
  • To develop novel cephem antibiotics, We have synthesized a new compound, named YH-487, by attaching the thiol and aminothiazole residue to $C_3$ and $C_7$ position of 7-ACA, respectively. Several characteristics such as structure, antibiotic spectrum, action mechanism, stability against ${\beta}-lactamase$ and synergistic effect were investigated. Anti-bactericidal activity of YH-487 against gram-positive and gram-negative bacteria were superior to that of the other cephem antibiotics. We have examined the action mechanisms of YH-487 using penicillin binding protein (PBP) assay, and found that the bactericidal activity was obtained by inhibiting PBP-1A, PBP-1B and PBP-3. YH-487 showed synergistic effect with gentamicin, tobramycin, and amikacin against Pseudomonas aeruginosa. In addition, YH-487 was effective against Enterobacter cloacae in combination with amikacin. Based on the above observations, YH-487 was classified as a novel third-generation ${\beta}-lactam$ antibiotics.

  • PDF

Antibacterial and Antioxidant Potential of Methanol Extract of Viburnum sargentii Seeds (Viburnum sargentii 종자 메탄올 추출물의 항균 및 항산화 활성에 대한 연구)

  • Patil, Maheshkumar Prakash;Seong, Yeong-Ae;Kang, Min-jae;Singh, Alka Ashok;Niyonizigiye, Irvine;Kim, Gun-Do;Lee, Jong-Kyu
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.671-678
    • /
    • 2019
  • Antibacterial and antioxidant activities of plant sources have attracted a wide range of interest across the world over the last decade. This is due to the growing concern for safe and alternative sources of antibacterial and antioxidant agents. In this study, we focused on the antibacterial and antioxidant activities and the chemical composition of a methanol extract from Viburnum sargentii seeds. The chemical composition was determined by gas chromatography-mass spectroscopy (GC-MS), and the antibacterial activity was screened by a disc diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the microbroth dilution and spread plate method, respectively. The V. sargentii extract showed growth inhibition activity on all tested Gram-positive (Listeria monocytogenes, Staphylococcus aureus, and Staphylococcus saprophyticus) and Gram-negative (Escherichia coli, Pseudomonas putida, and Proteus vulgaris) pathogenic bacteria. The MIC and MBC ranged from 0.156~1.25 mg/ml for Gram-positive and 0.625~5.0 mg/ml for Gram-negative tested bacteria. The GC-MS results revealed the presence of several phytochemicals such as ${\beta}-sitosterol$ and vitamin E, which are known for their pharmacological applications. The antioxidant activities of V. sargentii extract were investigated by three different methods: the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay, the reducing power assay, and the total antioxidant capacity assay. The results showed a concentration-dependent antioxidant potential for all three used methods. In sum, our findings suggest that the methanol extract of V. sargentii seeds has the potential to inhibit the growth of pathogenic bacteria and provide antioxidant compounds, making it therefore worthy of further investigation.

Antimicrobial Activity of Berberine against Oral Bacteria Related to Endodontic Infections

  • Lee, Dongkyun;Kim, Min Jung;Park, Soon-Nang;Lim, Yun Kyong;Min, Jeong-Beom;Hwang, Ho-Keel;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.38 no.4
    • /
    • pp.141-147
    • /
    • 2013
  • It has been established that berberine has strong antimicrobial effects. Little is known however regarding the antimicrobial activity of berberine against endodontic pathogenic bacteria or its cytotoxicity in human oral tissue cells. The antibacterial properties of berberine were tested against 5 strains of Enterococcus faecalis and type strains of Aggregatibacter actinomycetemcomitans, Prevotella nigrescens, Prevotella intermedia, and Tannerella forsythia, which are involved in endodontic infections. Antimicrobial activity was evaluated through minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) measurements. The viability of normal human gingival fibroblast (NHGF) cells after exposure to berberine was measured using a methyl thiazolyl tetrazolium (MTT) assay. The data showed that berberine has antimicrobial effects against A. actinomycetemcomitans with an MIC and MBC of $12.5{\mu}g/ml$ and $25{\mu}g/ml$, respectively. In the cytotoxicity studies, cell viability was maintained at 66.1% following exposure to $31.3{\mu}g/ml$ berberine. Overall, these findings suggest that berberine has antimicrobial activity against the tested bacteria. Nevertheless, lower concentrations in combination with other reagents will need to be tested before these in vitro results can be translated to clinical use.

EFFECTS OF CHLORHEXIDINE AND L1STERINE ON CELL ACTIVITY OF HUMAN GINGIVAL FIBROBLAST IN VITRO (Chlorhexidine과 Listerine이 인체 치은 섬유모세포의 활성화에 미치는 영향)

  • Kang, Jung-Koo;Yoo, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 1995
  • Chlorhexidine and Listerine are widely used in dentistry due to its effectiveness on plaque control and bactericidal action. The effects of these agent on chronic gingivitis and wound healing following surgical periodontal therapy in human has been favorable. Understanding the effects of chlorhexidine and Listerine on human gingival fibroblast will provide the rationale for its use during the healing process of periodontal surgery. The purpose of this study was to compare the effects of chlorhexidine and Listerine on human gingival fibroblast. Human gingival fibroblasts were cultured from the healthy gingiva on the extracted premolar of orthodontic patients. Human gingival fibroblast were trypsinized and cultured in growth medium added range of 0.0012-0.12% chlorhexidine and 1-100% Listerine mouth wash solution. The cell used in this study were between fifth to eighth passage number. The cell morphology were examined by inverted microscope and the cell activity were measured by MIT assay. The Morphology of gingival fibroblast added Chlorhexidine and Listerine at the concentration of all range were became globular and lost their cytoplasmic process. Our results indicate that a 0.0012 concentration of chlorhexidine and 1% concentration of Listerine were shows minimal cytotoxicity, but above these concentraion, there was a significant difference between the cell activity in the experimental group and control group(p

  • PDF

Antimicrobial Effects of Ursolic Acid against Mutans Streptococci Isolated from Koreans

  • Kim, Min-Jung;Kim, Chun-Sung;Park, Jae-Yoon;Lim, Yun-Kyong;Park, Soon-Nang;Ahn, Sug-Joon;Jin, Dong-Chun;Kim, Tae-Hyung;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.36 no.1
    • /
    • pp.7-11
    • /
    • 2011
  • Ursolic acid is a triterpenoid compound present in many plants. This study examined the antimicrobial activity of ursolic acid against mutans streptococci (MS) isolated from the Korean population. The antimicrobial activity was evaluated by the minimum inhibitory concentration (MIC) and time kill curves of MS. The cytotoxicity of ursolic acid against KB cells was tested using an MTT assay. The $MIC_{90}$ values of ursolic acid for Streptococcus mutans and Streptococcus sobrinus isolated from the Korean population were $2 {\mu}g$/ml and $4 {\mu}g$/ml, respectively. Ursolic acid had a bactericidal effect on S. mutans ATCC $25175^T$ and S. sobrinus ATCC $33478^T$ at > $2 \;{\times}\; MIC (4 {\mu}g$/ml) and $4 \;{\times}\; MIC (8 {\mu}g$/ml), respectively. Ursolic acid had no cytotoxic effect on KB cells at concentrations at which it exerted antimicrobial effects. The results suggest that ursolic acid can be used in the development of oral hygiene products for the prevention of dental caries.

Jn vivo and Jn vivo Antibacterial Activity of DW-ll6, a New Quinolone Antibiotic (신규 퀴놀론 항균제 DW-116의 in vivo 및 in vivo 항균활성)

  • Hwang, Yun-Ha;Han, Kyung-Oh;Lee, Jin;Yang, Hee-Bog;Chung, Yong-Ho;Yoon, Sung-June;Lee, Dug-Keun
    • Biomolecules & Therapeutics
    • /
    • v.5 no.2
    • /
    • pp.187-193
    • /
    • 1997
  • The in vivo and in vivo antibacterial activity of DW-116, a newly synthesized fluoroquinolone, were compared with those of other quinolones. DW-116 exhibited more potent antibacterial activity than rufloxacin and lower activity than ofloxacin and ciprofloxacin in in vivo assay But, DW-116 particularly showed strong activity against the family of staphylococci including methicillin-sensitive staphylococcus and its activity was more active than that of ciprofloxacin. The time-kill curve studies showed rapid bactericidal activity for DW-116. The post-antibiotic effect of DW-116 was observed between 0.66 and 5 hours. The therapeutic efficacy of DW-116 against respiratory infection with P. aeruginosa was as strong as that of ciprofloxacin and its effect against urinary tract in(traction with E. coli was more effective than rufloxacin. The excellent therapeutic efficacy of DW-116 against these local infections is due to its good pharmacokinetic profiles.

  • PDF

The Role of Helicobacter pylori's Fur Protein in the Oxidative Stress Induced by Photodynamic Therapy (Photodynamic Therapy에 의한 산화적 스트레스 조건에서 Helicobacter pylori의 Fur 단백질의 역할)

  • Park, Yu-Na;Kim, Ji-Hoon;Choi, Sung-Sook
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.124-129
    • /
    • 2011
  • The role of the ferric uptake regulator (Fur) of Helicobacter pylori in the oxidative stress was investigated in this study. A fur knockout mutant of H. pylori was constructed by replacing the fur gene with an aphA (kanamycin resistant marker) gene. Photodynamic therapy using methylene blue (MB) and 660 nm light was chosen to induce oxidative stress. The bactericidal effect of photodynamic therapy (PDT) was compared between wild type H. pylori and fur knockout mutant H. pylori. The degree of oxidative damage of DNA was confirmed using alkaline gel electrophoresis and an assay of 8-hydroxy-2-deoxyguanosine (8-OHdG). In control groups, the number of viable cells was maintained constantly during experiment. After PDT, the mutant H. pylori showed 10,000 times decreased viable cell number compared with wild type H. pylori. Depending on the exposure time of 660 nm light, the 3-fold increase in the concentration of 8-OHdG was observed in mutant H. pylori. The results of this study showed that H. pylori's Fur protein may play a role in oxidative stress induced by PDT.

Chitosan Based Silver Nanocomposites (CAgNCs) Display Antibacterial Effects against Vibrio ichthyoenteri

  • Beom, Seo Seung;Shin, Sang Yeop;Dananjaya, S.H.S.;De Silva, A.B.K.H.;Nikapitiya, Chamilani;Cho, Jongki;Park, Gun-Hoo;Oh, Chulhong;Kang, Do-Hyung;De Zoysa, Mahanama
    • Journal of Veterinary Clinics
    • /
    • v.34 no.4
    • /
    • pp.261-267
    • /
    • 2017
  • The aim of this study was to investigate the antibacterial properties of chitosan silver nanocomposites (CAgNCs) using pathogenic Vibrio ichthyoenteri as a bacterial model. Results of agar disc diffusion and turbidimetric assays showed that CAgNCs could inhibit the growth of V. ichthyoenteri in concentration dependent manner. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CAgNCs were 75 and $125{\mu}g/mL$, respectively. Furthermore, CAgNCs treatment induced the reactive oxygen species (ROS) level in V. ichthyoenteri cells in concentration and time dependent manner, suggesting that it generates oxidative stress, leading to bacterial cell death. The field emission scanning electron microscope (FE-SEM) images of CAgNCs treated V. ichthyoenteri exhibited strong cell membrane damage than un-treated control bacteria. MTT assay results showed the highest cell viability (22%) at $75{\mu}g/mL$ of CAgNCs treated bacteria samples. The results from this study suggest that CAgNCs is a potential antibacterial agent to control fish pathogenic bacteria.

Antibacterial effect of citrus press-cakes dried by high speed and far-infrared radiation drying methods

  • Samarakoon, Kalpa;Senevirathne, Mahinda;Lee, Won-Woo;Kim, Young-Tae;Kim, Jae-Il;Oh, Myung-Cheol;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • v.6 no.3
    • /
    • pp.187-194
    • /
    • 2012
  • In this study, the antibacterial effect was evaluated to determine the benefits of high speed drying (HSD) and far-infrared radiation drying (FIR) compared to the freeze drying (FD) method. Citrus press-cakes (CPCs) are released as a by-product in the citrus processing industry. Previous studies have shown that the HSD and FIR drying methods are much more economical for drying time and mass drying than those of FD, even though FD is the most qualified drying method. The disk diffusion assay was conducted, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined with methanol extracts of the dried CPCs against 11 fish and five food-related pathogenic bacteria. The disk diffusion results indicated that the CPCs dried by HSD, FIR, and FD prevented growth of all tested bacteria almost identically. The MIC and MBC results showed a range from 0.5-8.0 mg/mL and 1.0-16.0 mg/mL respectively. Scanning electron microscopy indicated that the extracts changed the morphology of the bacteria cell wall, leading to destruction. These results suggest that CPCs dried by HSD and FIR showed strong antibacterial activity against pathogenic bacteria and are more useful drying methods than that of the classic FD method in CPCs utilization.

Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

  • Nam, Ki-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.207-214
    • /
    • 2014
  • PURPOSE. This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS. Polymerized PMMA denture acrylic disc ($20mm{\times}2mm$) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and $100{\mu}L$ of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at $37^{\circ}C$ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS. PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION. This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required.