• 제목/요약/키워드: Bacterial vector

검색결과 169건 처리시간 0.026초

Induction Patterns of Suppressor of Cytokine Signaling (SOCS) by Immune Elicitors in Anopheles sinensis

  • Noh Mi-Young;Jo Yong-Hun;Lee Yong-Seok;Kim Heung-Chul;Bang In-Seok;Chun Jae-Sun;Lee In-Hee;Seo Sook-Jae;Shin E-Hyun;Han Man-Deuk;Kim Ik-Soo;Han Yeon-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제12권2호
    • /
    • pp.57-61
    • /
    • 2006
  • Suppressor of cytokine signaling (SOCS) is known to be as a negative feedback regulator in Janus kinase signal transducer and activator of transcription signaling. Highly conserved SOCS box domain was cloned from a Korean malaria vector, Anopheles sinensis. Sequence analysis indicates that it has identity to Anopheles gambiae (96%), Aedes aegypti (94%), Drosophila melanogaster (78%), Mus musculus (72%) and Homo sapiens (72%), respectively. Tissue specificity RT-PCR demonstrated that the expression level of AsSOCS transcript was high at abdomen, midgut, and ovary, whereas developmental expression patterns showed that the level of AsSOCS was high at egg, early pupae, and adult female. On the other hand, RT-PCR analysis after bacterial challenge showed that SOCS mRNA was strongly induced in larvae. In addition, it was also induced by various immune elicitors such as lipoteicoic acid, CpG-DNA, and laminarin. It seems that AsSOCS, repressor of JAK-STAT pathway, is highly conserved in mosquito, and may play an important role in mosquito innate immune response.

Localization of 5,105 Hanwoo (Korean Cattle) BAC Clones on Bovine Chromosomes by the Analysis of BAC End Sequences (BESs) Involving 21,024 Clones

  • Choi, Jae Min;Chae, Sung-Hwa;Kang, Se Won;Choi, Dong-Sik;Lee, Yong Seok;Park, Hong-Seog;Yeo, Jung-Sou;Choi, Inho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권11호
    • /
    • pp.1636-1650
    • /
    • 2007
  • As an initial step toward a better understanding of the genome structure of Korean cattle (Hanwoo breed) and initiation of the framework for genomic research in this bovine, the bacterial artificial chromosome (BAC) end sequencing of 21,024 clones was recently completed. Among these clones, BAC End Sequences (BESs) of 20,158 clones with high quality sequences (Phred score ${\geq}20$, average BES equaled 620 bp and totaled 23,585,814 bp), after editing sequencing results by eliminating vector sequences, were used initially to compare sequence homology with the known bovine chromosomal DNA sequence by using BLASTN analysis. Blast analysis of the BESs against the NCBI Genome database for Bos taurus (Build 2.1) indicated that the BESs from 13,201 clones matched bovine contig sequences with significant blast hits (E<$e^{-40}$), including 7,075 single-end hits and 6,126 paired-end hits. Finally, a total of 5,105 clones of the Korean cattle BAC clones with paired-end hits, including 4,053 clones from the primary analysis and 1,052 clones from the secondary analysis, were mapped to the bovine chromosome with very high accuracy.

생물방제균 Pseudomonas stutzeri YPL-1의 형질전환 조건 (Transformation of Antagonistic Pseudomonas stutzeri YPL-1 against Root Rotting Fungi Fusarium solani by Plasmid DNA)

  • 김용수;김상달
    • 한국미생물·생명공학회지
    • /
    • 제18권5호
    • /
    • pp.454-459
    • /
    • 1990
  • 식물근부균 Fusarium solani의 생육을 강력히 길항하는 생물방제균 Pseudomonas stutzeri YPL-1에 외부유전자 도입을 통한 유전공학적 육종방법의 기초를 확립하고자 하였다. 이를 위해 plasmid pKT230을 vector로 하여 형질전환의 가능성을 조사하였으며 이때, 혈질전환에 필요한 최적조건을 조사한 결과 P.stutzeri YPL-1의 형질전환에는 대수증식기 초기의 균체가 가장 적합하였고, 20mM RbCl과 100mM $CaCl_2$를 함유한 냉각용액에 1${\mu}g$/ml의 plasmid DNA를 첨가하였을 때 최대의 형질전환 빈도를 나타내었다. 또한 plasmid DNA와 competent cell를 혼합한 후 $0^{\circ}C$에서 60분간 처리하는 것이 가장 효과적이었으며 이와 같은 조건에서 형질전환 빈도는 2~$6 \times 10^{-6}$으로 나타났다.

  • PDF

Viability and Luciferase Activity of Freeze-Dried Recombinant Biosensor Cells for Detecting Aromatic Hydrocarbons

  • Kim, Mi-Na;Park, Hoo-Hwi;Lim, Woon-Ki;Shin, Hae-Ja
    • 대한의생명과학회지
    • /
    • 제9권4호
    • /
    • pp.195-201
    • /
    • 2003
  • Aromatic hydrocarbons are of major concern among genotoxic chemicals due to their toxicity and persistence. Some microorganisms can utilize aromatic hydrocarbons as carbon and energy sources by inducing expression of catabolic operon(s). The XylR regulatory protein activates transcription of the catabolic enzymes to degrade BTEX (benzene, toluene, ethylbenzene, and xylene) from its cognate promoters, Pu and Ps upon exposure of the cells to the aromatic hydrocarbons. The activity of XylR on the promoters was previously monitored using luciferase luc reporter system. The xylR, its promoter Pr and the promoter Po for the phenolic compound catabolic operon were introduced upstream of firefly luciferase luc in the pGL3b vector to generate about 7.1 kb of pXRBTEX. Here E. coli harboring the plasmid was freeze-dried under various conditions to fin,d optimal conditions for storage and transport. The cell viability and luciferase activity were maintained better, when the cells were freeze-dried at -7$0^{\circ}C$ in the addition of the 10% skim milk or 12% sucrose. However, coaddition of protectants such as 10% skim milk plus 10% glucose or 12% sucrose plus 10% glucose, resulted in much better viability and bioluminescence activity compared with the effect of single addition of each protectant. In addition, it was shown that the freeze-dried cells maintained almost intact bioluminescent activities and cell viability for at least 1 week after freeze-drying. This work demonstrated that the properly freeze-dried recombinant bacterial cells could be utilized as a whole-cell biosensor for simple and rapid monitoring of BTEX in the environment.

  • PDF

Molecular Cloning and Chaperone Activity of DnaK from Cold-adapted Bacteria, KOPRI22215

  • Sung, Min-Sun;Im, Ha-Na;Lee, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.1925-1930
    • /
    • 2011
  • Psychrophilic bacteria have acquired cold-resistance in order to protect themselves against freezing temperatures, which would otherwise be lethal. DnaK/DnaJ/GrpE systems are molecular chaperones which facilitate proper folding of newly synthesized proteins. Efficient folding processes are of great importance especially in a cold environment, such as the Arctic. In order to understand the protection mechanisms of psychrophilic bacteria against cold temperatures, we have explored a genome of KOPRI22215, tentatively identified as Psychromonas arctica, whose genome sequence has not yet been discovered. With an aim of searching for a coding gene of DnaK from KOPRI22215, we have applied a series of polymerase chain reactions (PCR) with homologous primers designed from other Psychromonas species and LA PCR in vitro cloning. 1917 bp complete coding sequence of dnaK from KOPRI22215 was identified including upstream promoter sites. Recombinant plasmids to overexpress PaDnaK along with EcDnaK (DnaK of E. coli) were then constructed in pAED4 vector and the pET-based system to induce PaDnaK expression by IPTG. Characterization assays of expressed PaDnaK were carried out by measuring survival rates upon 4 day incubation at 4 $^{\circ}C$: a refolding assay as molecular chaperone, and ATPase assay for functional activity. Taking account of all the data together, we conclude that PaDnaK was identified, successfully expressed, and found to be more efficient in providing cold-resistance for bacterial cells.

Characterization of Surface Layer Proteins in Lactobacillus crispatus Isolate ZJ001

  • Chen, Xueyan;Chen, Yang;Li, Xiaoliang;Chen, Ning;Fang, Weihuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1176-1183
    • /
    • 2009
  • Lactobacillus crispatus (L. crispatus) ZJ001 is highly adhesive to epithelial cells and expresses S-layer proteins. In this study, S-S-layer layer genes were sequenced and expressed in E. coli to characterize the function of proteins with this particular strain. L. crispatus ZJ001 harbored two S-layer genes slpA and slpB, and only slpA gene was expressed in the bacterium, as revealed by RT-PCR and immunoassays. The mature SlpA showed 47% amino acid sequence identity to SlpB. The SlpA and SlpB of L. crispatus ZJ001 were highly homologous at the C-terminal region to other Lactobacillus S-layer proteins, but were substantially variable at N-terminal and middle regions. Electron microscopic analysis indicated that His-slpA expressed in E. coli was able to form a sheet-like structure similar to the natural S-layer, but His-slpB formed as disc-like structures. In the cell binding experiments, HeLa cells were able to bind to both recombinant His-slpA and His-slpB proteins to the extent similar to the natural S-layer. The cell binding domains remain mostly in the N-terminal regions in SlpA and SlpB, as shown by high binding of truncated peptides SlpA2-228 and SlpB2-249. Our results indicated that SlpA was active and high binding to HeLa cells, and that the slpA gene could be targeted to display foreign proteins on the bacterial surface of ZJ001 as a potential mucosal vaccine vector.

Cloning and Expression of a Novel Chitosanase Gene (choK) from $\beta$-Proteobacterium KNU3 by Double Inverse PCR

  • Yi, Jae-Hyoung;Lee, Keun-Eok;Choi, Shin-Geon
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.563-569
    • /
    • 2004
  • The DNA sequence of the chitosanase gene (choK) from $\beta$-Proteobacterium KNU3 showed an 1,158-bp open reading frame that encodes a protein of 386 amino acids with a novel 74 signal peptide. The degenerated primers based on the partial deduced amino acid sequences from MALDI- TOF MS analyses yielded the 820 bp of the PCR product. Based on this information, double inverse PCR cloning experiments, which use the two specific sets of PCR primers rather than single set primers, identified the unknown 1.2 kb of the choK gene. Subsequently, a 1.8 kb of full choK gene was cloned from another PCR cloning experiment and it was then subcloned into pGEM T-easy and pUC18 vectors. The recombinant E. coli clone harboring recombinant pUC18 vector produced a clear halo around the colony in the glycol chitosan plates. The recombinant ChoK protein was secreted into medium in a mature form while the intracellular ChoK was produced without signal peptide cleavage. The activity staining of PAGE showed that the recombinant ChoK protein was identical to the chitosanase of wild-type. The comparison of deduced amino acid sequences of choK revealed that there is 92% identity with that of Sphingobacterium multivorum chitosanase. Judging from the conserved module in other bacterial chitosanases, chitosanase of KNU3 strain (ChoK) belongs to the family 80 of glycoside hydrolases.

Expression of a Tandemly Arrayed Plectasin Gene from Pseudoplectania nigrella in Pichia pastoris and its Antimicrobial Activity

  • Wan, Jin;Li, Yan;Chen, Daiwen;Yu, Bing;Zheng, Ping;Mao, Xiangbing;Yu, Jie;He, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.461-468
    • /
    • 2016
  • In recent years, various naturally occurring defence peptides such as plectasin have attracted considerable research interest because they could serve as alternatives to antibiotics. However, the production of plectasin from natural microorganisms is still not commercially feasible because of its low expression levels and weak stability. A tandemly arrayed plectasin gene (1,002 bp) from Pseudoplectania nigrella was generated using the isoschizomer construction method, and was inserted into the pPICZαA vector and expressed in Pichia pastoris. The selected P. pastoris strain yielded 143 μg/ml recombinant plectasin (Ple) under the control of the methanol-inducible alcohol oxidase 1 (AOX1) promoter. Ple was estimated by SDS-PAGE to be 41 kDa. In vitro studies have shown that Ple efficiently inhibited the growth of several gram-positive bacteria such as Streptococcus suis and Staphylococcus aureus. S. suis is the most sensitive bacterial species to Ple, with a minimum inhibitory concentration (MIC) of 4 μg/ml. Importantly, Ple exhibited resistance to pepsin but it was quite sensitive to trypsin and maintained antimicrobial activity over a wide pH range (pH 2.0 to 10.0). P. pastoris offers an attractive system for the cost-effective production of Ple. The antimicrobial activity of Ple suggested that it could be a potential alternative to antibiotics against S. suis and S. aureus infections.

The Stability, and Efficacy Against Penicillin-Resistant Enterococcus faecium, of the Plectasin Peptide Efficiently Produced by Escherichia coli

  • Chen, Xin;Wen, Yaoan;Li, Ling;Shi, Jiawei;Zhu, Zhe;Luo, Yuwen;Li, Yun;Chen, Rui
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1007-1014
    • /
    • 2015
  • Plectasin, the first defensin extracted from a fungus (the saprophytic ascomycete Pseudoplectania nigrella), is attractive as a prospective antimicrobial agent. The purpose of this study was to establish a bacterium-based production system and evaluate the antimicrobial activity of the resulting plectasin. A gene encoding plectasin, with the codon preference of Escherichia coli, was optimized based on its amino acid sequence, synthesized using genesplicing with overlap extension PCR, and inserted into the expression vector pGEX-4T-1. The fusion protein was expressed in the soluble fraction of E. coli and purified using glutathione Stransferase affinity chromatography. Plectasin was cleaved from the fusion protein with thrombin and purified by ultrafiltration. The purified plectasin showed strong, concentrationdependent antimicrobial activity against gram-positive bacteria, including antibiotic-resistant bacteria, especially penicillin-resistant Enterococcus faecium. This antimicrobial activity was equal to chemically synthesized plectasin and was maintained over a wide range of pH and temperatures. This soluble recombinant expression system in E. coli is effective for producing plectasin at a relatively lower cost, and higher purity and efficiency than prior systems, and might provide a foundation for developing a large-scale production system. Overall, plectasin shows potential as a novel, high-performance, and safe antibiotic for the treatment of refractory diseases caused by drug-resistant bacterial strains.

Construction of Recombinant Pichia pastoris Carrying a Constitutive AvBD9 Gene and Analysis of Its Activity

  • Tu, Jian;Qi, Kezong;Xue, Ting;Wei, Haiting;Zhang, Yongzheng;Wu, Yanli;Zhou, Xiuhong;Lv, Xiaolong
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.2082-2089
    • /
    • 2015
  • Avian beta-defensin 9 (AvBD9) is a small cationic peptide consisting of 41 amino acids that plays a crucial rule in innate immunity and acquired immunity in chickens. Owing to its wide antibacterial spectrum, lack of a residue, and failure to induce bacterial drug resistance, AvBD9 is expected to become a substitute for conventional antibiotics in the livestock and poultry industries. Using the preferred codon of Pichia pastoris, the mature AvBD9 peptide was designed and synthesized, based on the sequence from GenBank. The P. pastoris constitutive expression vector pGHKα was used to construct a pGHKα-AvBD9 recombinant plasmid. Restriction enzyme digestion was performed using SacI and BglII to remove the ampicillin resistance gene, and the plasmid was electrotransformed into P. pastoris GS115. High-expression strains with G418 resistance were screened, and the culture supernatant was analyzed by Tricine-SDS-PAGE and western blot assay to identify target bands of about 6 kDa. A concentrate of the supernatant containing AvBD9 was used for determination of antimicrobial activity. The supernatant concentrate was effective against Escherichia coli, Salmonella paratyphi, Salmonella pullorum, Pseudomonas aeruginosa, Enterococcus faecalis, and Enterobacter cloacae. The fermentation product of P. pastoris carrying the recombinant AvBD9 plasmid was adjusted to 1.0 × 108 CFU/ml and added to the drinking water of white feather broilers at different concentrations. The daily average weight gain and immune organ indices in broilers older than 7 days were significantly improved by the AvBD9 treatment.