• Title/Summary/Keyword: Bacterial ghost

검색결과 10건 처리시간 0.021초

Transformation of Edwardsiella tarda and Transcriptional Characteristics of E-lysis Gene in Recombinant Bacterial Ghosts (어류 병원성 세균 Edwardsiella tarda의 형질전환 및 재조합 ghost 세균에서의 E-lysis 유전자의 전사 발현 특징)

  • Kwon, Se Ryun;Nam, Yoon Kwon
    • Korean Journal of Ichthyology
    • /
    • 제19권2호
    • /
    • pp.83-87
    • /
    • 2007
  • Edwardsiella tarda, a gram (-) pathogen causing edwardsiellosis in farmed fish, was transformed via electroporation with a plasmid expression vector driving the PhiX174 E-lysis gene under the transcriptional control by lambda PR regulatory sequence. The persistent maintenance of the plasmid vector in recombinant E. tarda was found in numerous subculture procedures over up to 6 months without any adverse effect on the original copy number of plasmids. Comparative examination based on semi-quantitative RT-PCR analysis on transcriptional efficiency of E-lysis gene between recombinant E. coli and E. tarda indicated that promoter strength and induction capacity of bacterial ghosts would be retarded in E. tarda as compared to the E. coli. However, the completeness of induction for bacterial ghosts in E. tarda was the same with E. coli, in which at least 99.99% of induction rate was possible and further the viability of recombinant bacteria was completely eliminated by a post-induction procedure including washing and freeze drying lyophilization.

Comparison of the immunogenicity between bacterial ghost and formalin-killed bacteria for Vibrio vulnificus

  • Kwon, Se Ryun
    • Journal of fish pathology
    • /
    • 제25권3호
    • /
    • pp.159-164
    • /
    • 2012
  • Vibrio vulnificus ghosts (VVG) were generated using a mobilizable vector including a thermosensitive expression cassette by conjugation. The vaccine potential of VVG was investigated in mouse. Mice immunized with VVG showed significantly higher antibody titer than those with formalin-killed V. vulnificus. The present study supports the conceptive usefulness of bacterial ghosts as vaccine candidates.

Evaluation of Optimal Condition for Recombinant Bacterial Ghost Vaccine Production with Four Different Antigens of Streptococcus iniae-enolase, GAPDH, sagA, piaA (연쇄구균증 항원-enolase, GAPDH, sagA, piaA에 대한 재조합 고스트 박테리아 백신의 생산 최적화)

  • Ra, Chae-Hun;Kim, Yeong-Jin;Son, Chang-Woo;Jung, Dae-Young;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • 제19권7호
    • /
    • pp.845-851
    • /
    • 2009
  • A vector harboring double cassettes; a heterologous gene expression cassette of pHCE-InaN-antigen and a ghost formation cassette of pAPR-cI-E lysis 37 SDM was constructed and introduced to E. coli DH5a. For the production of a bacterial ghost vaccine, bacterial ghosts from E. coli / Streptococcus iniae with four different types of antigens - enolase, GAPDH, sagA and piaA - were produced by the optimization of fermentation parameters such as a glucose concentration of 1 g/l, agitation of 300 rpm and aeration of 1 vvm. Efficiency of ghost bacteria formation was evaluated with cultures of OD$_{600}$=1.0, 2.0 and 3.0. The efficiency of the ghost bacteria formation was 99.54, 99.67, 99.99 and 99.99% with inductions at OD$_{600}$=3.0, 1.0, 2.0 and 1.0 for E. coli/S. iniae antigens enolase, piaA, GAPDH and sagA, respectively. Ghost bacteria as a vaccine was harvested by centrifugation. The antigen protein expressions were analyzed by SDS-PAGE and western blot analysis, and the molecular weights of the enolase, piaA, GAPDH and sagA were 78, 26, 67 and 26 kDa, respectively. The molecular weights of the expressed antigens were consistent with theoretical sizes obtained from the amino acid sequences.

Efficient Delivery of Toxoid Antigens using Micro/Nano-carriers (마이크로/나노-운반체를 이용한 톡소이드 항원의 효과적인 전달 방법)

  • Park, Ga-Young;Ahn, Gna;Lee, Se Hee;Kim, Sang Bum;Kim, Yang-Hoon;Ahn, Ji-Young
    • Journal of Life Science
    • /
    • 제28권4호
    • /
    • pp.496-507
    • /
    • 2018
  • Immunization has been performed for centuries and is generally accepted as a sustainable method of controlling bacteria, viruses, and mediated and infectious diseases. Despite many studies having been performed on animal subjects to demonstrate the importance of toxin immunity, the use of toxoid vaccines in humans and animals has been limited for a long time. Recently, the development of the toxoid antigen delivery system has been facilitated using novel nano-medicinal technology. The micro/nano-carrier has been used to improve vaccination coverage as well as reduce vaccine costs. A micro/nano-carrier is a micro/nano-sized material that delivers immune cargo, including recombinant or peptide toxoid antigens. These toxoid antigens are either encapsulated in the interior or displayed on the surface of micro/nano-carriers as a way to protect them from the cellular machinery. In particular, the combination of toxoid antigens and micro/nano-carriers can induce phagocytosis through the specific interactions between GCs and macrophages; thus, the toxoid antigens can be delivered easily into the macrophages. This paper reviews recent achievements of micro/nano-carriers in the field of vaccine delivery systems such as microbial ghost cells (GCs, Bacterial ghost cells and Yeast ghost cells), gene-manipulated outer membrane vesicles (OMVs) and biocompatible, polymer-based nanoparticles (NPs, NP-Carrier and NP-Cage). Finally, this review shows various aspects in terms of the hosts' immune responses.

New typhoid vaccine using sponge-like reduced protocol: development and evaluation

  • Rehab Bahy;Asmaa Gaber;Hamdallah Zedan;Mona Mabrook
    • Clinical and Experimental Vaccine Research
    • /
    • 제12권1호
    • /
    • pp.70-76
    • /
    • 2023
  • Purpose: Typhoid remains a major health problem, especially in the developing world. Furthermore, the emergence of multidrug-resistant and extensively drug-resistant strains of Salmonella typhi added a sense of urgency to develop more effective typhoid vaccines, one of which is bacterial ghosts (BGs), prepared by both genetic and chemical means. The chemical method includes incubation with numerous agents for a short time at their minimum inhibitory or minimum growth concentrations. This study included the preparation of BGs by a sponge-like reduced protocol (SLRP). Materials and Methods: Critical concentrations of sodium dodecyl sulfate, NaOH, and H2O2 were used. Moreover, high-quality BGs were visualized by scanning electron microscope (SEM). Subculturing was used to confirm the absence of vital cells. Besides, the concentrations of the released DNA and protein were estimated spectrophotometrically. In addition, the integrity of cells was proved by visualizing Gram-stained cells using a light microscope. Furthermore, a comparison between the immunogenicity and safety of the prepared vaccine and the available whole-cell killed vaccine was established. Results: Improved preparation of high-quality BGs of S. typhi, visualized by SEM, revealed punctured cells with intact outer shells. Moreover, the absence of vital cells was confirmed by subculturing. At the same time, the release of respective amounts of proteins and DNA is another evidence of BGs' production. Additionally, the challenge test provided evidence that the prepared BGs are immunogenic and have the same efficacy as the whole cell vaccine. Conclusion: The SLRP provided a simple, economical, and feasible method for BGs preparation.

Effect of AL072, a Novel Anti-Legionella Antibiotic, on Growth and Cell Morphology of Legionella pneumophila

  • Kang, Byeong-Cheol;Park, Jae-Hak;Lee, Yong-Soon;Suh, Jung-Woo;Chang, Jun-Hwan;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권3호
    • /
    • pp.371-375
    • /
    • 1999
  • AL072 is a potent anti-Legionella antibiotic produced by Streptomyces strain AL91. The minimum inhibitory concentration (MIC) of AL072 against Legionella pneumophila was 0.2$\mu$g/ml. Bacterial growth was rapidly inhibited at the dose range between the MIC and 20 times of the MIC when the antibiotic was added at the mid-exponential phase. Ultrastructural changes in L. pneumophila were observed upon treatment with AL072. Under electron microscopical observation, the organisms treated with AL072 exhibited characteristic morphological changes in the cellular outer coat. Also irregular morphological changes, such as the formation of filamentous materials in the cytoplasm, an increase in the size and number of cytoplasmic vacuoles, the extruding of cytoplasmic contents, the formation of spheroplast and ghost cells, and blebbings in the cell wall were observed. Furthermore, immunoelectron microscopical observation of the group treated with the MIC showed that the immune complex attached mainly to the cell wall. The results of these experiments indicate that AL072, like the inhibitors of cell wall synthesis, act selectively on the cell wall of L. pneumophila.

  • PDF

Antibacterial Activity of Powdered Spice against Escherichia coli and Staphylococcus aureus (향신료 분말의 Esdcherichia coli 와 Staphylococcus aureus 에 대한 항균작용)

  • 김미림;최경호;박찬성
    • Food Science and Preservation
    • /
    • 제7권1호
    • /
    • pp.124-131
    • /
    • 2000
  • Antibacterial activities of powdered spices(garlic , ginger, cinnamon and clove) against pathogenic Escherichia coli )157:H7 and Staphyloccus auresus were investigated. Spice powder was added in was exponetial phase of each bacterial culture . Growth inhibition was determined by the absorbance at 660nm and morphological changes of the cells were observed by transmission electron microscope (TEM). Ginger powder has the highest antibacterial activity, following cinnamon , clove and garlic has the least activity.Growth of Escherichia coli O157:H7 and Staphyloccus aureus were completely inhibited within 5 hours after addition of 1 % of garlic , 0.3% of ginger or cinnamon , 0.5% of clove powder on the exponential phase of the cells. Spice untreated cells of E. coli and S. aureus, the cytoplasm was entirely surrounded by rigid cell wall and cell walls formed a smooth layer well attached to the plasma membrane. In the cells of E. coli and S. aureus treated with spice powder, cell wall and plasma membrane were lysed and severely damaged. E.coli cells growth in the presence of spice powder showed plammolysis, the loss of electron dense material, the formation of extra cellular blebs and cytoplasm burst out from the cell. S .sureus cells grown in the presence of spice powder showed swell of cell wall, the loss of electron dense material , coagulation of cell cytoplasm and formation of extra cellular blebs. Severely damaged cells of S. aureus lost whole cytoplasm and left as ghost of the cell. Spice powder stimulated autolyssi and induced cell death.

  • PDF

ANTIBACTERIAL EFFECT OF POLYPHOSPHATES ON MUTANS STREPTOCOCCI (Mutans streptococci에 대한 polyphosphate의 항균효과)

  • Kang, Kye-Sook;Choi, Yeong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • 제30권1호
    • /
    • pp.80-91
    • /
    • 2003
  • Mutans streptococci, especially S. mutans and S. sobrinus strongly implicated in pathogenesis of dental caries, the major cause of tooth loss in children. Use of an antibacterial agent controlling dental caries has been rationalized. The present study was performed to observe the antibacterial effect of inorganic polyphosphates (polyP) on S. mutans and S. sobrinus. S. mutans GS5 and S. sobrinus 6715 were grown in brain-heart infusion broth with or without polyP. Minimal inhibitory concentration (MIC) of polyP for S. mutans GS5 was determined to be 0.08% and that for S. sobrius 6715 was 0.17%. PolyP 15 added to the growing culture of S. mutans GS5 and S. sobrinus 6715 at their exponential phase was as effective in inhibiting the growth of S. mutans GS5 and S. sobrinus 6715 as polyP added at the very beginning of the culture. More than 85% of the cells lost their viability determined by viable cell count when polyP 15 was added to the culture of growing S. mutans GS5 at MIC, suggesting that polyP 15 has bacterial effect on the bacterium. And more than 99.9% of the cells lost their viability determined by viable cell count when polyP 15 was added to the culture of growing S. sobrinus 6715 at MIC, suggesting that polyP 15 has bacterial effect on the bacterium. Intracellular nucleotide release from S. mutans CS5 and S. sobrinus 6715 was increased in the presence of polyP 15 for 5h but was not really reversed by the addition of divalent cations like $Ca^{++}\;and\;Mg^{++}$. The majority of the cells appeared to be atypical in their shape, demonstrating accumulation of highly electron-dense granules and ghost cells. The overall results suggest that polyP have a strong bactericidal activity against S. mutans and S. sobrinus in which lysis in relation to chelation may not play the major role but unknown mechanism that possibly affects the viability of the bacterium may be involved. PolyP may be used as an agent for prevention of dental caries.

  • PDF

Inactivation of Pathogenic Escherichia coli Using Crude Extract of Immunized Silkworm (면역유도누에 추출물을 이용한 병원성 대장균의 불활성화)

  • Park, Jong Woo;Jeong, Chan Young;Lee, Chang Hoon;Kang, Sang Kuk;Ju, Wan-Taek;Kim, Seong-Wan;Kim, Nam-Suk;Kim, Kee Young
    • Journal of Life Science
    • /
    • 제31권8호
    • /
    • pp.755-760
    • /
    • 2021
  • Swine diarrhea is a livestock disease that causes huge economic losses to pig farms. In general, diarrhea occurs because of the proliferation of pathogenic Escherichia coli (E. coli). The toxins produced by the proliferated E. coli cause edema in pigs. Although the proliferation of these coliforms can be prevented by using a vaccine, the vaccines containing chemically produced dead bacteria are not very effective, making it difficult to control the proliferation of E. coli. Therefore, there is a need to develop new, more effective vaccines. In this study, we prepared killed F4+ and F18ab+ E. coli, which induce diarrhea and edema in pigs, using the extracts of immune-induced silkworms containing antimicrobial peptides and examined their availability as a killed-bacteria vaccine. First, the antimicrobial activity analysis of the prepared immune-induced silkworm extract was conducted using the radial diffusion assay. The results showed high activity against both F4+ and F18ab+ E. coli. The production efficiency of E. coli dead cells was determined using the colony-counting method. The concentration of the E. coli dead cells was the highest (50 mg/ml) when treated at 4℃. In addition, the analysis of the prepared dead cells using a transmission electron microscope confirmed that E. coli leaked out of the cytoplasm and the cell membrane remained intact. Therefore, F4+ and F18ab+ E. coli produced using immune-induced silkworms extract are considered to be highly available as bacterial ghost vaccines that can help prevent swine diarrhea and the resulting edema.

Effect of Phytoncide on Porphyromonas gingivalis (P. gingivalis에 대한 피톤치드의 항균효과)

  • Kim, Sun-Q;Shin, Mi-Kyoung;Auh, Q-Schick;Lee, Jin-Yong;Hong, Jung-Pyo;Chun, Yang-Hyun
    • Journal of Oral Medicine and Pain
    • /
    • 제32권2호
    • /
    • pp.137-150
    • /
    • 2007
  • Trees emit phytoncide into atmosphere to protect them from predation. Phytoncide from different trees has its own unique fragrance that is referred to as forest bath. Phytoncide, which is essential oil of trees, has microbicidal, insecticidal, acaricidal, and deodorizing effect. The present study was performed to examine the effect of phytoncide on Porphyromonas gingivalis, which is one of the most important causative agents of periodontitis and halitosis. P. gingivalis 2561 was incubated with or without phytoncide extracted from Hinoki (Chamaecyparis obtusa Sieb. et Zucc.; Japanese cypress) and then changes were observed in its cell viability, antibiotic sensitivity, morphology, and biochemical/molecular biological pattern. The results were as follows: 1. The phytoncide appeared to have a strong antibacterial effect on P. gingivalis. MIC of phytoncide for the bacterium was determined to be 0.008%. The antibacterial effect was attributed to bactericidal activity against P. gingivalis. It almost completely suppressed the bacterial cell viability (>99.9%) at the concentration of 0.01%, which is the MBC for the bacterium. 2. The phytoncide failed to enhance the bacterial susceptibility to ampicillin, cefotaxime, penicillin, and tetracycline but did increase the susceptibility to amoxicillin. 3. Numbers of electron dense granules, ghost cell, and vesicles increased with increasing concentration of the phytoncide, 4. RT-PCR analysis revealed that expression of superoxide dismutase was increased in the bacterium incubated with the phytoncide. 5. No distinct difference in protein profile between the bacterium incubated with or without the phytoncide was observed as determined by SDS-PAGE and immunoblot. Overall results suggest that the phytoncide is a strong antibacterial agent that has a bactericidal action against P. gingivalis. The phytoncide does not seem to affect much the profile of the major outer membrane proteins but interferes with antioxidant activity of the bacterium. Along with this, yet unknown mechanism may cause changes in cell morphology and eventually cell death.