• Title/Summary/Keyword: Bacterial deterioration

Search Result 42, Processing Time 0.026 seconds

Effects of Ensiling Fermentation and Aerobic Deterioration on the Bacterial Community in Italian Ryegrass, Guinea Grass, and Whole-crop Maize Silages Stored at High Moisture Content

  • Li, Yanbing;Nishino, Naoki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.9
    • /
    • pp.1304-1312
    • /
    • 2013
  • The effects of storage period and aerobic deterioration on the bacterial community were examined in Italian ryegrass (IR), guinea grass (GG), and whole-crop maize (WM) silages. Direct-cut forages were stored in a laboratory silo for 3, 7, 14, 28, 56, and 120 d without any additives; live counts, content of fermentation products, and characteristics of the bacterial community were determined. 2,3-Butanediol, acetic acid, and lactic acid were the dominant fermentation products in the IR, GG, and WM silages, respectively. The acetic acid content increased as a result of prolonged ensiling, regardless of the type of silage crop, and the changes were distinctively visible from the beginning of GG ensiling. Pantoea agglomerans, Rahnella aquatilis, and Enterobacter sp. were the major bacteria in the IR silage, indicating that alcoholic fermentation may be due to the activity of enterobacteria. Staphylococcus sciuri and Bacillus pumilus were detected when IR silage was spoiled, whereas between aerobically stable and unstable silages, no differences were seen in the bacterial community at silo opening. Lactococcus lactis was a representative bacterium, although acetic acid was the major fermentation product in the GG silage. Lactobacillus plantarum, Lactobacillus brevis, and Morganella morganii were suggested to be associated with the increase in acetic acid due to prolonged storage. Enterobacter cloacae appeared when the GG silage was spoiled. In the WM silage, no distinctive changes due to prolonged ensiling were seen in the bacterial community. Throughout the ensiling, Weissella paramesenteroides, Weissella confusa, and Klebsiella pneumoniae were present in addition to L. plantarum, L. brevis, and L. lactis. Upon deterioration, Acetobacter pasteurianus, Klebsiella variicola, Enterobacter hormaechei, and Bacillus gibsonii were detected. These results demonstrate the diverse bacterial community that evolves during ensiling and aerobic spoilage of IR, GG, and WM silages.

A Study on the Deterioration of Raw Milk Quality by the Growth of Psychrotrophic Bacteria (원유의 저온성 세균의 증식에 의한 유질변화에 관한연구)

  • 정충일;강국희;이재영
    • Journal of Food Hygiene and Safety
    • /
    • v.1 no.2
    • /
    • pp.151-156
    • /
    • 1986
  • A trial was carried out to check the seasonal variation in total bacterial counts (T.B.C.) and psychrotrophic bacterial counts (P.B.C.) and to investigate the quality deterioration of raw milk collected from dairy farms in Kyunggi area, Korea. T.B.C. of raw milk exceeded $10^{7}/ml$ in summer and $10^{6}/ml$ in winter 1980, but they have gradually decreased from 1983. In 1985, the counts showed less than $2{\times}10^{6}/ml$ through the whole year. The same tendency of improvement in coliform counts was shown. The counts were higher than $10^{6}/ml$ in summer and $10^{5}/ml$ in winter 1982, but they were kept lower than $1{\times}10^{5}/ml$ in 1985 through the whole year. Free fatty acids and free amino acids were increased in raw milk stored at $5^{\circ}C\;and\;10^{\circ}C$, by the growth of psychrotrophic bacteria.

  • PDF

Fracture Morphology of Degraded Historic Silk Fibers Using SEM (SEM을 이용한 출토 견섬유의 손상 형태에 관한 연구)

  • Bae, Soon Wha;Lee, Mee Sik
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.5
    • /
    • pp.667-675
    • /
    • 2013
  • After analyzing excavated $17-18^{th}$ century silk fibers through a scanning electron microscopy, we discovered seven different kinds of fracture morphology. Using Morton & Hearle fiber fracture morphology, we classified the findings into four different categories. Type I is tensile failure resulting from brittle fracture, granular fracture, and ductile fracture. Type II is fatigue failure caused by tensile fatigue, flex fatigue, and axial split (fibrillation). Type III is bacterial deterioration discovered only in excavated artifacts. Type IV is a combination of the three above. Humid underground conditions and the infiltration of bacteria caused the fibers to swell and weaken its interfibrillar cohesion. Fractures occur when drying and processing an excavated artifact that is already in a fragile condition. Therefore, one must minimize damage through a prompt cleaning process and make sure that the least possible force is exerted on the fabric during any treatment for repair and exhibition.

Effects of Basil and Majoram Essential Oils with or without Ascorbic Acid on Color and Oxidative and Microbial Stability of Beef Patties

  • Chung, Hai-Jung
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Fresh ground beef was mixed with ascorbic acid, basil essential oil, majoram essential oil, or each essential oil combined with ascorbic acid and stored at 1 $\pm$ 1$^{\circ}C$ for 7 days. Color, lipid oxidation (TBARS formation), aerobic bacterial counts and pH were determined. Basil and majoram essential oils were effective in inhibiting color deterioration, lipid oxidation and bacterial growth. The combined addition of basil and ascorbic acid showed the highest protection against color fading, followed by majoram + ascorbic acid, and ascorbic acid alone. Basil and majoram essential oils were most effective in delaying TBARS formation (p < ().01). Ascorbic acid did not exert an antioxidative effect and even exhibited a pro-oxidant effect. The pH values of all samples increased slightly, but no significant differences were observed, either among treatments or throughout the storage time (p > 0.05).

Microbial Quality Change Model of Korean Pan-Fried Meat Patties Exposed to Fluctuating Temperature Conditions

  • Kim, So-Jung;An, Duck-Soon;Lee, Hyuek-Jae;Lee, Dong-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.348-353
    • /
    • 2008
  • Aerobic bacterial growth on Korean pan.fried meat patties as a primary quality deterioration factor was modeled as a function of temperature to estimate microbial spoilage on a real.time basis under dynamic storage conditions. Bacteria counts in the stretch.wrapped foods held at constant temperatures of 0, 5, 10 and $15^{\circ}C$ were measured throughout storage. The bootstrapping method was applied to generate many resampled data sets of mean microbial counts, which were then used to estimate the parameters of the microbial growth model of Baranyi & Roberts in the form of differential equations. The temperature functions of the primary model parameters were set up with confidence limits. Incorporating the temperature dependent parameters into the differential equations of bacterial growth could produce predictions closely representing the experimental data under constant and fluctuating temperature conditions.

Concrete crack rehabilitation using biological enzyme

  • Chen, How-Ji;Tai, Pang-Hsu;Peng, Ching-Fang;Yang, Ming-Der
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.413-417
    • /
    • 2017
  • Concrete is a material popularly used in construction. Due to the load-bearing and external environmental factors during utilization or manufacturing, its surface is prone to flaws, such as crack and leak. To repair these superficial defects and ultimately and avoid the deterioration of the concrete's durability, numerous concrete surface protective coatings and crack repair products have been developed. Currently, studies are endeavoring to exploit the mineralization property of microbial strains for repairing concrete cracks be the repairing material for crack rehabilitation. This research aims to use bacteria, specifically B. pasteurii, in crack rehabilitation to enhance the flexural and compression strength of the repaired concrete. Serial tests at various bacterial concentrations and the same $Urea-CaCl_2$ medium concentration of 70% for crack rehabilitation were executed. The results prove that the higher the concentration of the bacterial broth, the greater the amount of calcium carbonate precipitate was induced, while using B. pasteurii broth was for crack rehabilitation. The flexural and compression strengths of the repaired concrete test samples were the greatest at 100% bacterial concentration. Compared to the control group (bacterial concentration of 0%), the flexural strength had increased by 32.58% for 1-mm crack samples and 51.01% for 2-mm crack samples, and the compression strength had increased by 28.58% and 23.85%, respectively. From the SEM and XRD test results, a greater quantity of rectangular and polygonal crystals was also found in samples with high bacterial concentrations. These tests all confirm that using bacteria in crack rehabilitation can increase the flexural and compression strength of the repaired concrete.

Characterization of the Bacterial Community Associated with Methane and Odor in a Pilot-Scale Landfill Biocover under Moderately Thermophilic Conditions

  • Yang, Hyoju;Jung, Hyekyeng;Oh, Kyungcheol;Jeon, Jun-Min;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.6
    • /
    • pp.803-814
    • /
    • 2021
  • A pilot-scale biocover was constructed at a sanitary landfill and the mitigation of methane and odor compounds was compared between the summer and non-summer seasons. The average inlet methane concentrations were 22.0%, 16.3%, and 31.3%, and the outlet concentrations were 0.1%, 0.1%, and 0.2% during winter, spring, and summer, respectively. The odor removal efficiency was 98.0% during summer, compared to 96.6% and 99.6% during winter and spring, respectively. No deterioration in methane and odor removal performance was observed even when the internal temperature of the biocover increased to more than 40℃ at midday during summer. During summer, the packing material simultaneously degraded methane and dimethyl sulfide (DMS) under both moderately thermophilic (40-50℃) and mesophilic conditions (30℃). Hyphomicrobium and Brevibacillus, which can degrade methane and DMS at 40℃ and 50℃, were isolated. The diversity of the bacterial community in the biocover during summer did not decrease significantly compared to other seasons. The thermophilic environment of the biocover during summer promoted the growth of thermotolerant and thermophilic bacterial populations. In particular, the major methane-oxidizing species were Methylocaldum spp. during summer and Methylobacter spp. during the non-summer seasons. The performance of the biocover remained stable under moderately thermophilic conditions due to the replacement of the main species and the maintenance of bacterial diversity. The information obtained in this study could be used to design biological processes for methane and odor removal during summer and/or in subtropical countries.

SILAGE FERMENTATION AND SILAGE ADDITIVES - Review -

  • Bolsen, K.K.;Ashbell, G.;Weinberg, Z.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.5
    • /
    • pp.483-493
    • /
    • 1996
  • Advances in silage technology, including precision chop forage harvesters, improved silos, polyethylene sheeting, shear cutting silo unloaders, and the introduction of total mixed rations, have made silage the principal method of forage preservation. A better understanding of the biochemistry and microbiology of the four phases of the ensiling process has also led to the development of numerous silage additives. Although acids and acid salts still are used to ensile low-DM forages in wet climates, bacterial inoculants have become the most widely used silage additives in the past decade. Commercial inoculants can assure a rapid and efficient fermentation phase; however, in the future, these products also must contribute to other areas of silage management, including the inhibition of enterobacteria, clostridia, and yeasts and molds. Nonprotein nitrogen additives have the problems of handling, application, and reduced preservation efficiency, which have limited their wide spread use. Aerobic deterioration in the feedout phase continues to be a serious problem, especially in high-DM silages. The introduction of competitive strains of propionic acid-producing bacteria, which could assure aerobically stable silages, would improve most commercial additives. New technologies are needed that would allow the farmer to assess the chemical and microbial status of the silage crop on a given day and then use the appropriate additive(s).

Effects of Gaseous Ozone Exposure on Bacterial Counts and Oxidative Properties in Chicken and Duck Breast Meat

  • Muhlisin, Muhlisin;Utama, Dicky Tri;Lee, Jae Ho;Choi, Ji Hye;Lee, Sung Ki
    • Food Science of Animal Resources
    • /
    • v.36 no.3
    • /
    • pp.405-411
    • /
    • 2016
  • The effects of gaseous ozone exposure on the bacterial counts and oxidative properties were evaluated in duck and chicken breast fillets, which were stored under a continuous flux of gaseous ozone (10×10−6 kg O3/m3/h) at 4±1℃ for 4 d. The ozone generator was set to on for 15 min and off for 105 min, and this cyclic timer was set during storage. Ozone effectively reduced the growth of coliform, aerobic and anaerobic bacteria in both chicken and duck breast. However, lipid oxidation occurred faster in duck breast than chicken breast with higher degree of discoloration, TBARS value, and antioxidant enzyme (glutathione peroxidase and catalase) activity decline rates. It is concluded that ozone effectively controlled the growth of bacteria in both chicken and duck breast with less effects on oxidative deterioration in chicken breast.

Evaluation on the Durability of RC Structure Covered Creek for Road Vehicle (철근콘크리트 복개구조물의 내구성 평가)

  • 문한영;김성수;김홍삼;안기용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.789-792
    • /
    • 1999
  • Reinforced concrete structures covered creek for road vehicle located in urban areas have been experiencing corrosion of concrete and reinforcing steel caused by $H_2S$ gases generated by anaerobic bacterial. H2S gases react with oxygen and water to form sulfuric acid ($H_2SO_4$). This acid chemically attacks concrete, and sulfate ions penetrate into the concrete, causing rebar corrosion. In this work, to determine the conditions of RC culvert boxes which were constructed in the 1970s, various tests were conducted, including carbonation depth, compressive strength, half-cell potential measurements, and XRD analyses. Results indicated that the concrete deterioration was caused by sulfate attack and rebar corrosion. This paper discusses the evaluation on the durability of reinforced concrete structures covered creek for road vehicle.

  • PDF