• Title/Summary/Keyword: Bacterial degradation

Search Result 332, Processing Time 0.026 seconds

Diagnostic Role of Bile Pigment Components in Biliary Tract Cancer

  • Keun Soo Ahn;Koo Jeong Kang;Yong Hoon Kim;Tae-Seok Kim;Kwang Bum Cho;Hye Soon Kim;Won-Ki Baek;Seong-Il Suh;Jin-Yi Han
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.674-681
    • /
    • 2023
  • Bile pigment, bilirubin, and biliverdin concentrations may change as a results of biliary tract cancer (BTC) altering the mechanisms of radical oxidation and heme breakdown. We explored whether changes in bile pigment components could help distinguish BTC from benign biliary illness by evaluating alterations in patients with BTC. We collected bile fluid from 15 patients with a common bile duct stone (CBD group) and 63 individuals with BTC (BTC group). We examined the bile fluid's bilirubin, biliverdin reductase (BVR), heme oxygenase (HO-1), and bacterial taxonomic abundance. Serum bilirubin levels had no impact on the amounts of bile HO-1, BVR, or bilirubin. In comparison to the control group, the BTC group had considerably higher amounts of HO-1, BVR, and bilirubin in the bile. The areas under the curve for the receiver operating characteristic curve analyses of the BVR and HO-1 were 0.832 (p<0.001) and 0.891 (p<0.001), respectively. Firmicutes was the most prevalent phylum in both CBD and BTC, according to a taxonomic abundance analysis, however the Firmicutes/Bacteroidetes ratio was substantially greater in the BTC group than in the CBD group. The findings of this study showed that, regardless of the existence of obstructive jaundice, biliary carcinogenesis impacts heme degradation and bile pigmentation, and that the bile pigment components HO-1, BVR, and bilirubin in bile fluid have a diagnostic significance in BTC. In tissue biopsies for the diagnosis of BTC, particularly for distinguishing BTC from benign biliary strictures, bile pigment components can be used as additional biomarkers.

Bacillus siamensis 3BS12-4 Extracellular Compounds as a Potential Biological Control Agent against Aspergillus flavus

  • Patapee Aphaiso;Polson Mahakhan;Jutaporn Sawaengkaew
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.8
    • /
    • pp.1671-1679
    • /
    • 2024
  • Aspergillus flavus, the primary mold that causes food spoilage, poses significant health and economic problems worldwide. Eliminating A. flavus growth is essential to ensure the safety of agricultural products, and extracellular compounds (ECCs) produced by Bacillus spp. have been demonstrated to inhibit the growth of this pathogen. In this study, we aimed to identify microorganisms efficient at inhibiting A. flavus growth and degrading aflatoxin B1. We isolated microorganisms from soil samples using a culture medium containing coumarin (CM medium) as the sole carbon source. Of the 498 isolates grown on CM medium, only 132 bacterial strains were capable of inhibiting A. flavus growth. Isolate 3BS12-4, identified as Bacillus siamensis, exhibited the highest antifungal activity with an inhibition ratio of 43.10%, and was therefore selected for further studies. The inhibition of A. flavus by isolate 3BS12-4 was predominantly attributed to ECCs, with a minimum inhibitory concentration and minimum fungicidal concentration of 0.512 g/ml. SEM analysis revealed that the ECCs disrupted the mycelium of A. flavus. The hydrolytic enzyme activity of the ECCs was assessed by protease, β-1,3-glucanase, and chitinase activity. Our results demonstrate a remarkable 96.11% aflatoxin B1 degradation mediated by ECCs produced by isolate 3BS12-4. Furthermore, treatment with these compounds resulted in a significant 97.93% inhibition of A. flavus growth on peanut seeds. These findings collectively present B. siamensis 3BS12-4 as a promising tool for developing environmentally friendly products to manage aflatoxin-producing fungi and contribute to the enhancement of agricultural product safety and food security.

Isolation of a Novel Tenacibaculum sp. JS-1 and Characterization of Its β-Agarase

  • Jin Sun Kim;Young Min Woo;Dong-Geun Lee;Andre Kim;Sang-Hyeon Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.52 no.2
    • /
    • pp.135-140
    • /
    • 2024
  • This study reports the isolation of a bacterium capable of degrading agar and the characterization of its agarase. An agar-degrading marine bacterium JS-1 was isolated using Marine agar 2216 media from seawater collected from the seashore of Angolpo, Changwon, Gyeongnam Province, Republic of Korea. An agar-degrading bacterium was named as Tenacibaculum sp. JS-1 by phylogenetic analysis based on 16S rRNA gene sequence. The extracellular crude agarase was prepared from the culture media of Tenacibaculum sp. JS-1 and used for characterization. Relative activities at 20, 30, 40, 50, and 60℃ were 39, 73, 100, 74, and 53%, respectively. Relative activities at pH 5, 6, 7, and 8 were 46%, 67%, 100%, and 49%, respectively. Its extracellular agarase showed maximum activity (164 U/l) at pH 7.0 and 40℃ in a 20 mM GTA buffer. The residual activities after heat treatment at 20, 30, and 50℃ for 30 min were 84, 73, and 26% or more, respectively. After 2 h heat treatment at 20, 30, 40, and 50℃, the residual activities were 80, 64, 52 and 21%, respectively. Thin layer chromatography analysis suggested that Tenacibaculum sp. JS-1 produces extracellular β-agarases that hydrolyze agarose to produce neoagarooligosaccharides, including neoagarohexaose (12.3%), neoagarotetraose (65.1%), and neoagarobiose (22.6%) at 6 h. Tenacibaculum sp. JS-1 and its β-agarase could be valuable for producing neoagarooligosaccharides with a variety of functional properties. These properties include inhibiting bacterial growth, slowing down starch degradation, and whitening, which are of interest for pharmaceuticals, food, cosmeceuticals, and nutraceuticals.

Degradation Ability of Fungicide Myclobutanil by Several Soil Bacteria (수종(數種) 토양세균(土壤細菌)에 의한 살균제(殺菌劑) Myclobutanil의 분해력(分解力))

  • Han, Seong-Soo;Park, Pill-Jae;Jeong, Jae-Hun;Rim, Yo-Sup
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.25-36
    • /
    • 1996
  • This study was carried out to isolate some bacterial strains which had potentiality of good degrader of fungicides from herbicide free soil and to clarify degradation of a fungicide mycrobutanyl[2-p-chlorophenyl-2-(1H-1,2,4-triazole-1-ylmethyl)-hexanenitrile]. Ten strains of the gram-positive and the gram-negative bacteria were isolated and identified. Most of them vigorously proliferated at 55ppm of mycrobutanil, but the stains were not grown when more than 70ppm of this fungicide were treated Staphylococcus spp. I, Actinobacillus spp. III, and another I of the isolated bacteria degraded more than 35% of the treated mycrobutanil. These three strains could utilize mycrobutanil as nitrogen and carbon sources. Mycrobutanil was rapidly decomposed by these strains when applied once or three times. Tested bacteria gradually increased in growth when mycrobutanil was applied repeatedly. Degradation of mycrobutanil and growth of these bacteria were greater in pH 5.5, and they were high in the order of $28^{\circ}C$ > $18^{\circ}C$ > $38^{\circ}C$.

  • PDF

Postmortem Degradation of Fish Muscle Proteins 1. Nature of proteolysis and bacterial contribution (어육단백질의 사후분해 1. 단백질분해의 본질과 세균기여)

  • CHUNG Jong Rak;KIM In Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.9 no.2
    • /
    • pp.120-128
    • /
    • 1976
  • Two experiments were conducted to study the nature of protein degradation in fish muscle postmortem, first one with English sole (Paraphyrus vetulus) followed by another with rockfish (Sebastodes spp.). In the first one, proteolysis was measured by the increase of amino-N in gutted fish during storage in ice and in the homogenates prepared from fish of different ice storage during $20^{\circ}C-incubation$. In order to test the possible involvement of fish muscle a cathepsin, a portion of each homogenate sample was exposed to 0.5 Mrad of gamma radiation to destroy viable microorganisms prior to the incubation. Proteolysis was not detected until viable count reached a level above $10^7$ cells per gm fish flesh, corresponding to 31 days of ice storage. Even if fish flesh were mechanically disrupted by means of homogenization and subsequently incubated at $20^{\circ}C$, proteloysis attributable to muscle cathepsin was not detected. In the second with rockfish muscle aseptically prepared from freshly killed fish, the samples were inoculated with a proteolytic strain of fish spoilage Pseudomonad or irradiated at 0, 0.5 and 3.0 Mrad. The four samle groups were stored at $0-2^{\circ}C$ to compare the spoilage pattern of sterile and non-sterile muscle. In sterile muscle both total-N (extracted in 0.5M KCl) and amino-N $(soluble\;in\;70\%\;ethanol)$ declined slightly while the inoculated muscle showing increase in parallel with the increase of number of inoculated bacterium. The results indicate that proteolysis is a part of normal fish spoilage and the onset of proteolysis is delayed until viable count reaches its maximum level. Contribution of fish muscle cathepsin to protein degradation in white flesh fish muscle post-mortem is nil.

  • PDF

Characterization of Petroleum Hydrocarbon Degradation by a Sphingomonas sp. 3Y Isolated from a Diesel-Contaminated Site. (디젤오염지역에서 분리한 세균 Sphingomonas sp. 3Y의 석유계 탄화수소분해특성)

  • Ahn, Yeong-Hee;Jung, Byung-Gil;Sung, Nak-Chang;Lee, Young-Ok
    • Journal of Life Science
    • /
    • v.19 no.5
    • /
    • pp.659-663
    • /
    • 2009
  • Bacterial stain 3Y was isolated from a site that was contaminated with diesel for more than 15 years. The strain could grow on various petroleum using hydrocarbons as the sole carbon source. The strain grew not only on aliphatic hydrocarbons but also on aromatic hydrocarbons. 3Y grew on aliphatic petroleum hydrocarbons hexane or hexadecane, and aromatic petroleum hydrocarbons BTEX, phenol, biphenyl, or phenanthrene. The strain showed aromatic ring dioxygenase and meta-cleavage dioxygenase activities as determined by tests using indole and catechol. Aromatic ring dioxygenase is involved in the initial step of biodegradation of aromatic hydrocarbons while meta-cleavage dioxygenase catalyzes the cleavage of the benzene ring. Based on a nucleotide sequence analysis of its 16S rRNA gene, 3Y belongs to the genus Sphingomonas. A phylogenetic tress was constructed based on the nucleotide sequences of closest relatives of 3Y and petroleum hydrocarbon degrading sphingomonads. 3Y was in a cluster that was different from the cluster that contained well-known sphingomonads. The results of this study suggest that 3Y has the potential to cleanup oil-contaminated sites. Further investigation is warranted to optimize conditions to degrade petroleum hydrocarbons by the strain to develop a better bioremediation strategy.

Aggregatibacter actinomycetemcomitans Strongly Stimulates Endothelial Cells to Produce Monocyte Chemoattractant Protein-1 and Interleukin-8

  • Choi, Eun-Kyoung;Kang, Mi-Sun;Oh, Byung-Ho;Kim, Sang-Yong;Kim, So-Hee;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • v.37 no.3
    • /
    • pp.137-145
    • /
    • 2012
  • Aggregatibacter actinomycetemcomitans is the most important etiologic agent of aggressive periodontitis and can interact with endothelial cells. Monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) are chemokines, playing important roles in periodontal pathogenesis. In our current study, the effects of A. actinomycetemcomitans on the production of MCP-1 and IL-8 by human umbilical vein endothelial cells (HUVEC) were investigated. A. actinomycetemcomitans strongly induced the gene expression and protein release of both MCP-1 and IL-8 in a dose- and time-dependent manner. Dead A. actinomycetemcomitans cells were as effective as live bacteria in this induction. Treatment of HUVEC with cytochalasin D, an inhibitor of endocytosis, did not affect the mRNA up-regulation of MCP-1 and IL-8 by A. actinomycetemcomitans. However, genistein, an inhibitor of protein tyrosine kinases, substantially inhibited the MCP-1 and IL-8 production by A. actinomycetemcomitans, whereas pharmacological inhibition of each of three members of mitogen-activated protein (MAP) kinase family had little effect. Furthermore, gel shift assays showed that A. actinomycetemcomitans induces a biphasic activation (early at 1-2 h and late at 8-16 h) of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and an early brief activation (0.5-2 h) of activator protein-1 (AP-1). Activation of canonical NF-${\kappa}B$ pathway ($I{\kappa}B$ kinase activation and $I{\kappa}B-{\alpha}$ degradation) was also demonstrated in these experiments. Although lipopolysaccharide from A. actinomycetemcomitans also induced NF-${\kappa}B$ activation, this activation profile over time differed from that of live A. actinomycetemcomitans. These results suggest that the expression of MCP-1 and IL-8 is potently increased by A. actinomycetemcomitans in endothelial cells, and that the viability of A. actinomycetemcomitans and bacterial internalization are not required for this effect, whereas the activation of protein tyrosine kinase(s), NF-${\kappa}B$, and AP-1 appears to play important roles. The secretion of high levels of MCP-1 and IL-8 resulting from interactions of A. actinomycetemcomitans with endothelial cells may thus contribute to the pathogenesis of aggressive periodontitis.

Characterization of β-agarase from Isolated Simiduia sp. SH-4 (분리된 Simiduia sp. SH-4가 생산하는 β-agarase의 특성조사)

  • Kim, Jae-Deog;Lee, Sol-Ji;Jo, Jeong-Gwon;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.453-459
    • /
    • 2016
  • Agarases are classified into α-agarase and β-agarase that produce agarooligosaccharides and neoagarooligosaccharides, respectively. Neoagarooligosaccharides have whitening effect of skin, delay of starch degradation, and inhibition of bacterial growth etc. Hence, the object of this study was to isolate a novel agarase producing marine bacterium and characterization of its β-agarase. A novel agar-degrading bacterium was isolated from seashore of Namhae at Gyeongnamprovine, Korea and purely cultured with Marine agar 2216 media. The isolated bacterium was identified as Simiduia sp. SH-4 after 16S rRNA gene sequencing. The enzymatic sample was obtained from culture media of Simiduia sp. SH-4. Enzymatic activity was highly increased from 20(30% relative activity) to 30℃ (100%) and decreased from 30 to 40℃(75%) and so more. Relative activity was 100% at pH 6 while those were about 91% and 59% at pH 5.0 and 7.0, respectively, meaning the enzyme possesses narrow optimal pH range. Hence, the enzyme exhibited the maximal activity with 120.4 units/l at pH 6.0 and 30℃ in 20 mM Tris-HCl buffer. Thin layer chromatography (TLC) analysis showed that Simiduia sp. SH-4 produces β-agarase, which hydrolyze agarose to produce biofunctional neoagarooligosaccharides such as neoagarotetraose and neoagarobiose. Hence, broad applications would be possible using Simiduia sp. SH-4 and its enzyme in the food industry, cosmetics and medical fields.

Isolation of a New Agar Degrading Bacterium, Maribacter sp. SH-1 and Characterization of its Agarase (신규 한천분해세균 Maribacter sp. SH-1의 분리 및 효소 특성조사)

  • Lee, Chang-Eun;Lee, Sol-Ji;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.156-162
    • /
    • 2016
  • In this study, we isolated a new agar-degrading marine bacterium and characterized its agarase. An agardegrading marine bacterium SH-1 was isolated from seawater, collected from the seashore of Namhae in Gyeongnam province, Korea, and cultured in marine agar 2216 media. It was identified as Maribacter. sp. SH-1 by phylogenetic analyses, based on 16S rRNA gene sequence. The extracellular agarase was extracted from culture media of Maribacter sp. SH-1 and characterized. Its relative activities were 56, 62, 94, 100, and 8% at 20, 30, 40, 50, and 60℃, respectively, whereas 15, 100, 60, and 21% relative activities were observed at pH 5, 6, 7, and 8, respectively. Its extracellular agarase exhibited maximum activity (231 units/l) at pH 6.0 and 50℃, in 20 mM Tris-HCl buffer. Therefore, this agarase would be applicable as it showed the maximum activity at the temperature at which the agar is in a sol state. Furthermore, the agarase activities remained over 90% at 20, 30, and 40℃ after 0.5 h exposure at these temperatures. Thin layer chromatography analysis suggested that Maribacter sp. SH-1 produces extracellular β-agarase, as it hydrolyzes agarose to produce neoagarooligosaccharides, such as neoagarohexaose (34.8%), neoagarotetraose (52.2%), and neoagarobiose (13.0%). Maribacter sp. SH-1 and its β-agarase would be useful for the production of neoagarooligosaccharides, which shows functional properties, like skin moisturizing, skin whitening, inhibition of bacterial growth, and delay in starch degradation.

Present Status of Soilborne Disease Incidence and Scheme for Its Integrated Management in Korea (국내 토양병해 발생현황과 종합 관리방안)

  • Kim, Choong-Hoe;Kim, Yong-Ki
    • Research in Plant Disease
    • /
    • v.8 no.3
    • /
    • pp.146-161
    • /
    • 2002
  • Incidence of soilborne diseases, as a major cause of failure of continuous monocropping becomes severe in recent years. For examples, recent epidemics of club root of chinese cabbage, white rot of garlic, bacterial wilt of potato, pepper phytophthora blight, tomato fusarium wilt and CGMMV of watermelon are the diseases that require urgent control measures. Reasons for the severe incidence of soilborne diseases are the simplified cropping system or continuous monocropping associated with allocation of major production areas of certain crop and year-round cultivation system that results in rapid degradation of soil environment. Neglect of breeding for disease resistance relative to giving much emphasis on high yield and good quality, and cultural methods putting first on the use of chemical fertilizers are thought to be the reason. Counter-measures against soilborne disease epidemics would become most effective when the remedies are seeded for individual causes. As long-term strategies, development of rational cropping system which fits local cropping and economic condition, development and supply of cultivars resistant to multiple diseases, and improvement of soil environment by soil conditioning are suggested. In short-term strategies, simple and economical soil-disinfestation technology, and quick and accurate forecasting methods for soilborne diseases are urgent matter far development. for these, extensive supports are required in governmental level for rearing soilborne disease specialists and activation of collaborating researches to solve encountering problems of soilborne diseases.