• Title/Summary/Keyword: Bacterial Inoculation

Search Result 347, Processing Time 0.026 seconds

Antiviral Activity of the Exopolysaccharide Produced by Serratia sp. Strain Gsm01 Against Cucumber Mosaic Virus

  • Ipper, Nagesh S.;Cho, Sae-Youll;Lee, Seon-Hwa;Cho, Jun-Mo;Hur, Jang-Hyun;Lim, Chun-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • The potential of the exopolysaccharide (EPS) from a Serratia sp. strain Gsm01 as an antiviral agent against a yellow strain of Cucumber mosaic virus (CMV-Y) was evaluated in tobacco plants (Nicotiana tabacum cv. Xanthi-nc). The spray treatment of plants using an EPS preparation, 72h before CMV-Y inoculation, protected them against symptom appearance. Fifteen days after challenge inoculation with CMV-Y, 33.33% of plants showed mosaic symptoms in EPS-treated plants compared with 100% in the control plants. The EPS-treated plants, which showed mosaic symptoms, appeared three days later than the controls. The enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR) analyses of the leaves of the protected plants revealed that the EPS treatment affected virus accumulation in those plants. Analysis of phenylalanine ammonia lyase, peroxidase, and phenols in protected plants revealed enhanced accumulation of these substances. The pathogenesis-related (PR) genes expression represented by PR-lb was increased in EPS-treated plants. This is the first report of a systemic induction of protection triggered by EPS produced by Serratia sp. against CMV-Y.

Analysis of Plasmid pJP4 Horizontal Transfer and Its Impact on Bacterial Community Structure in Natural Soil

  • KIM TAE SUNG;KIM MI SOON;JUNG MEE KUM;JOE MIN JEONG;AHN JAE HYUNG;OH KYOUNG HEE;LEE MIN HYO;KIM MIN KYUN;KA JONG OK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.376-383
    • /
    • 2005
  • Alcaligenes sp. JMP228 carrying 2,4­dichlorophenoxyacetic acid (2,4-D) degradative plasmid pJP4 was inoculated into natural soil, and transfer of the plasmid pJP4 to indigenous soil bacteria was investigated with and without 2,4-D amendment. Plasmid pJP4 transfer was enhanced in the soils treated with 2,4-D, compared to the soils not amended with 2,4-D. Several different transconjugants were isolated from the soils treated with 2,4-D, while no indigenous transconjugants were obtained from the unamended soils. Inoculation of the soils with both the donor Alcaligenes sp. JMP228/pJP4 and a recipient Burkholderia cepacia DBO 1 produced less diverse transconjugants than the soils inoculated with the donor alone. Repetitive extragenic palindromic-polymerase chain reaction (REP-PCR) analysis of the transconjugants exhibited seven distinct genomic DNA fingerprints. Analysis of 16S rDNA sequences indicated that the transconjugants were related to members of the genera Burkholderia and Pandoraea. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes revealed that inoculation of the donor caused clear changes in the bacterial community structure of the 2,4-D­amended soils. The new 16S rRNA gene bands in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D­degrading transconjugants isolated from the soil. The results indicate that introduction of the 2,4-D degradative plasmid as Alcaligenes sp. JMP228/pJP4 has a substantial impact on the bacterial community structure in the 2,4-D-amended soil.

Mobilization of Heavy Metals in Contaminated Soils induced by Bioaugmentation of Shewanella xiamenensis HM14

  • Walpola, Buddhi Charana;Arunakumara, K.K.I.U.;Song, Jun-Seob;Lee, Chan-Jung;Yoon, Min-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.290-298
    • /
    • 2014
  • A bacterial strain with the potential ability to solubilize heavy metals was isolated from heavy metal contaminated soils collected from abandoned mines of Boryeong area in South Korea. The bacterial strain with the highest degree of metal resistance was shown to have close proximity with Shewanella xiamenensis FJ589031, according to 16S rRNA sequence analysis, and selected for investigating the mobilization of metals in soil or plant by the strain. The strain was found to be capable of solubilizing metals both in the absence and in the presence of metals (Co, Pb and Cd). Metal mobilization potential of the strain was assessed in a batch experiment and the results showed that inoculation could increase the concentrations of water soluble Co, Pb and Cd by 48, 34 and 20% respectively, compared with those of non-inoculated soils. Bacterial-assisted growth promotion and metal uptake in sunflower (Helianthus annuus) was evaluated in a pot experiment. In comparison with non-inoculated seedlings, the inoculation led to increase the growth of H. annuus by 24, 18 and 16% respectively in Co, Pb and Cd contaminated soils. Moreover, enhanced accumulation of Co, Pb and Cd in the shoot and root systems was observed in inoculated plants, where metal translocation from root to the above-ground tissues was also found to be enhanced by the strain. Plant growth promotion and metal mobilizing potential of the strain suggest that the strain could effectively be employed in enhancing phytoextraction of Co, Pb and Cd from contaminated soils.

First Report of Bacterial Wilt by Ralstonia pseudosolanacearum on Peanut in Korea (Ralstonia pseudosolanacearum에 의한 땅콩 풋마름병 발생 보고)

  • Choi, Soo Yeon;Kim, Nam Goo;Kim, Sang-Min;Lee, Bong Choon
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.54-56
    • /
    • 2022
  • A peanut plant showing wilt and browned symptom was found in the field of Gochang, Korea, in July 2021. The symptomatic peanut plant was collected from the field and isolation of the pathogen caused the wilt symptom was performed using the collected sample on TZC media. The dominated colony on media was isolated colony on media was isolated and subcultured of purification. The pure cultured bacteria was identified as Ralstonia solanacearum by sequencing of 16S rRNA gene. Multiplex polymerase chain reaction using phylotype-specific primer set identified isolate as phylotype I (R. pseudosolanacearum). Phylogenetic tree was constructed based on 16S rRNA sequence and it was closed with R. pseudosolanacearum. Pathogenicity of the isolates was assessed by soil drenching inoculation on 4-week-old peanut plant. The wilt symptom was successfully reproduced by inoculation of the isolates after 14 days. This is first report of bacterial wilt caused by R. pseudosolanacearum on peanut in Korea.

Effect of Azospirillum brasilense and Methylobacterium oryzae Inoculation on Growth of Red Pepper (Capsicum annuum L.)

  • Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • Plant growth-promoting effects of rhizobacterial inoculation obtained in pot experiments cannot always be dependably reproduced in fields. In this study, we investigated the effect of inoculation with Azospirillum brasilense and Methylobacterium oryzae, which have displayed growth promoting effects in several pot experiments, on growth and fruit yield of red pepper under field condition in a plastic-film house. Four rows spaced 90 cm apart were prepared after application of compost ($10Mg\;ha^{-1}$), and red pepper seedlings (Capsicum annum L., Nocgwang) were transplanted in each row with 40-cm space. Experimental treatments were consisted of A. brasilense CW903 inoculation, M. oryzae CBMB20 inoculation, and uninoculated control. Twelve plots, 10 plants per plot, were allotted to the three treatments with four replicates in a completely randomized design. At the time of transplanting, 50 mL of each inoculum ($1{\times}10^8cells\;mL^{-1}$) was introduced into root zone soil of each plant, and re-inoculated at 7 and 14 days after transplant. Plant growth and fruit yield were measured during the experiment. Both A. brasilense CW903 and M. oryzae CBMB20 could not promote growth of red pepper plants. All growth parameters measured were not significantly different among treatments. There were large variations in fruit yield recorded on plot basis, and no statistically significant differences were found among treatments. The failure to demonstrate the expected plant growth promoting effect of the inoculants is possibly due to various environmental factors, including weather and soil characteristics, reducing the possibility to express the potential of the inoculated bacterial strains.

Biocontrol Potential of a Lytic Bacteriophage PE204 against Bacterial Wilt of Tomato

  • Bae, Ju Young;Wu, Jing;Lee, Hyoung Ju;Jo, Eun Jeong;Murugaiyan, Senthilkumar;Chung, Eunsook;Lee, Seon-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1613-1620
    • /
    • 2012
  • Bacterial wilt caused by Ralstonia solanacearum is a devastating disease of many economically important crops. Since there is no promising control strategy for bacterial wilt, phage therapy could be adopted using virulent phages. We used phage PE204 as a model lytic bacteriophage to investigate its biocontrol potential for bacterial wilt on tomato plants. The phage PE204 has a short-tailed icosahedral structure and double-stranded DNA genome similar to that of the members of Podoviridae. PE204 is stable under a wide range of temperature and pH, and is also stable in the presence of the surfactant Silwet L-77. An artificial soil microcosm (ASM) to study phage stability in soil was adopted to investigate phage viability under a controlled system. Whereas phage showed less stability under elevated temperature in the ASM, the presence of host bacteria helped to maintain a stable phage population. Simultaneous treatment of phage PE204 at $10^8$ PFU/ml with R. solanacearum on tomato rhizosphere completely inhibited bacterial wilt occurrence, and amendment of Silwet L-77 at 0.1% to the phage suspension did not impair the disease control activity of PE204. The biocontrol activities of phage PE204 application onto tomato rhizosphere before or after R. solanacearum inoculation were also investigated. Whereas pretreatment with the phage was not effective in the control of bacterial wilt, post-treatment of PE204 delayed bacterial wilt development. Our results suggested that appropriate application of lytic phages to the plant root system with a surfactant such as Silwet L-77 could be used to control the bacterial wilt of crops.

Studies on Mulberry Shoot Rot caused by Fusarium spp. (Fusarium spp. 균에 의한 뽕나무신소썩음병에 관한 연구)

  • 윤형주;김영택;진경식;박인균;양성열
    • Journal of Sericultural and Entomological Science
    • /
    • v.37 no.1
    • /
    • pp.86-91
    • /
    • 1995
  • Isolation and pathogenicity of Fusarium spp. from mulberry shoot rot and severity of diseases which were known as bacterial blight were examined on four mulberry varieties in Suwon, Kongju and Chuncheon, A symptom of mulberry shoot rot was initiated long brown spot on young leaves and shoots. It was developed into dark brown spot and produced white mycelia and spores on the diseased symptoms. A symptom of bacterial blight showed leaf rolling and water soaking spot and produced bacterial ooze on leaf and shoot However later stage of upper two types of symptom was hardly distinguished. Severities of shoot rot and bacterial blight were 7.5% and 4.4% in Suwon, respectively. Isolation of Fusarium spp. on shoot rot symptoms was highter than that on bacterial blight symptoms, but isolation of Pseudomonas spp. was higher on bacterial blight symptoms. Trends of pathogenicity of Fusarium spp. and Pseudomonas spp. were similar to inoculation works, and isolations of pathogenic Fusarium spp. from center of symptom was higher than that from 30cm of symptom of all samples in three cultivation areas. Disease severities of shoot rot on variety of Kaeryangppong were 13.9%, 15.9% and 17.2% in Suwon, Kongju and Chuncheon, respectively. However variety of Cheongolppong was highly resistant to shoot rot disease in three cultivation areas.

  • PDF

Detection of Xanthomonas hortorum pv. carotae in Jeju Island Soils after Carrot Harvest (수확 후 제주 당근 재배 토양에서 Xanthomonas hortorum pv. carotae 분리)

  • Mi-Jin Kim;Hyun Su Kang;Yong Ho Shin;Yong Chull Jeun
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.433-439
    • /
    • 2023
  • Bacterial leaf blight in carrot is one of the most important diseases in the worldwide. In the past decade, its introduction into Korea is causing great concern due to the potential damage to carrot crops domestically. This bacterial disease is caused by Xanthomonas hortorum pv. carotae (Xhc). This study aimed to isolate and identify bacterial strains from the soil of carrot farms in Jeju Island. The bacterial isolates showing characteristics similar with those of Xhc were selected when cultured on artificial media. Through DNA sequencing and analysis based on NCBI data, some of the selected bacterial strains were identified as Xhc. Furthermore, the bacterial strains caused the typical symptom of bacterial leaf blight after inoculation on carrot leaves. The results of this study showed the potential establishment of Xhc in the soil of Jeju Island and it may be valuable data for establish a strategy preventing the domestic spread of carrot bacterial leaf blight in the future.

Suppression of Bacterial Soft Rot on Chinese Cabbage by Calcium Fertilizer Treatment (칼슘비료 처리에 의한 배추 무름병 발생 억제)

  • Kim, Byung-Sup;Yeoung, Young-Rog
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.82-85
    • /
    • 2004
  • Bacterial soft rot by Erwinia carotovora subsp. carotovora is one of the diseases causing the biggest damages in Chinese cabbage cultivation. This study was conducted to evaluate on suppressive effect of calcium fertilizer to bacterial soft rot of Chinese cabbage. Seven calcium fertilizers were selected for evaluation. And screening was conducted to select effective agents for controlling bacterial soft rot. When applied by the nursery test condition using mineral oil inoculation method with Chinese cabbage, calcium hydroxide had more suppressive efficacy than any other calcium fertilizer, While nitrogen fertilizer was induced the disease, calcium hydroxide was suppressed soft rot disease in field test as well as seedling test. Treatment of calcium+nitrogen fertilizer as well as calcium only showed a significant control effect in the field experiment with Chinese cabbage 'Sanchon' in 2003.

Bacterial Contamination of Surfaces in an Ultrasound Room (초음파실 표면의 세균 오염평가)

  • Kim, Hee-jeong;Choi, Yujin;Lee, Chang-Lae
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.231-237
    • /
    • 2021
  • The ongoing coronavirus disease 2019 (COVID-19) pandemic has highlighted the importance of hospital hygiene and infection control in hospital settings. To raise hygiene awareness among ultrasound technicians, we evaluated the hygiene status of an ultrasound room, in comparison with that of objects used in daily life. Using the swab method, the following surfaces were examined: eight surfaces in the ultrasound room including the ultrasound probes (convex, linear, sector, 3D), ultrasound track ball, ultrasound keyboard, ultrasound gel (sealed and in use) and pillow as well as four surfaces of everyday objects including subway handles, common computer keyboards, common computer mouse, and cell phones. The streak plate technique was used for inoculation into media, which was observed for the formation of bacterial colonies following incubation for 24 h. Six bacterial strains were detected from objects used in the ultrasound room, including methicillin-resistant Staphylococcus aureus. Four strains of bacteria were detected on surfaces of everyday objects. The equipment and accessories used in an ultrasound room can act as vehicles for infecting patients. Establishment of standardized hygiene protocols and periodic training of the staff are recommended to avoid cross-infection.