• Title/Summary/Keyword: Bacterial Inoculation

Search Result 347, Processing Time 0.026 seconds

Studies on Manifestation of Bacterial Leaf Blight Resistant Gene I. Relationship Between the Resistance of Rice to Bacterial Leaf Blight and the Multiplication and Spread of the Xanthomonas campestris pv. oryzae (수도 흰잎마름병 저항성 유전자 발현에 관한 연구 I. 흰잎마름병균의 증식 및 이동과 저항성과의 관계)

  • 김한용;최재을
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.2
    • /
    • pp.132-136
    • /
    • 1990
  • This experiment was conducted to study the multiplication and spread of bacterial population in water exuded through the hydathode of infected leaf of Xanthomonas campestris pv. oryzae in resistant and susceptible rice cultivars to bacterial leaf blight. The results obtained are summarized as follows. The bacterial multiplication in resistant cultivars was almost constant from three days to twelve days after inoculation with population of 10$^3$-10$^4$cfu/$\textrm{cm}^2$, but the multiplication was increased as days after inoculation extended in susceptible cultivars. The speed of bacterial multiplication and the number of bacteria spread above and below the inoculated position were closely related with the resistance of rice cultivars to bacterial leaf blight. The bacterial multiplication and spread were observed throughout the all growing stages including seedling, maximum tillering and flag leaf stages. The bacterial populations in water exuded through the hydathode were dependent on the multiplication and spread, and the populations were also closely related with the resistance of rice cultivars.

  • PDF

Screening of Disease Resistance of Chinese Cabbage Cultivars and Lines to Bacterial Soft Rot (배추 무름병에 대한 저항성 품종 검정)

  • Chung, Eun-Kyoung;Zhang, Xuan-Zhe;Choi, Bo-Ra;Lee, Eun-Ju;Yeoung, Young-Rog;Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.9 no.1
    • /
    • pp.39-41
    • /
    • 2003
  • Bacterial soft rot by Erwinia carotovora subsp. carotovora is one of the diseases causing the biggest damages in Chinese cabbage cultivation. This study was conducted to evaluate disease resistance of Chinese cabbage cultivars and breeding lines to E. carotovora subsp. carotovora by new inoculation method, mineral oil inoculation method, inoculating 10 ml of the mixture (4:1, v/v) of bacterial suspension and mineral oil on the central bases of Chinease cabbage seedling. Total 43 Chinese cabbage cultivars and lines obtained from 3 domestic seed companies and universities were screened for disease resistance using the above mentioned inoculation method. This screening test showed that Chinese cabbage C3-26, C3-28, C3-29 and C29-51-51-53 lines were resistant, Gangta, Gumchonyealgali, Mini, DB50, Jibu, Pyungchng, Sanchon and Yellow King No.2 cultivars were susceptible, and the others were moderate resistant.

Assessment of Rhizosphere Microbial Community Structure in Tomato Plants after Inoculation of Bacillus Species for Inducing Tolerance to Salinity (토마토에 염류 내성을 유도하는 바실러스 균주 처리 후 근권 미생물 군집 구조 연구)

  • Yoo, Sung-Je;Lee, Shin Ae;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.49-59
    • /
    • 2021
  • BACKGROUND: Soil salinity causes reduction of crop productivity. Rhizosphere microbes have metabolic capabilities and ability to adaptation of plants to biotic and abiotic stresses. Plant growth-promoting bacteria (PGPB) could play a role as elicitors for inducing tolerance to stresses in plants by affecting resident microorganism in soil. This study was conducted to demonstrate the effect of selected strains on rhizosphere microbial community under salinity stress. METHODS AND RESULTS: The experiments were conducted in tomato plants in pots containing field soil. Bacterial suspension was inoculated into three-week-old tomato plants, one week after inoculation, and -1,000 kPa-balanced salinity stress was imposed. The physiological and biochemical attributes of plant under salt stress were monitored by evaluating pigment, malondialdehyde (MDA), proline, soil pH, electrical conductivity (EC) and ion concentrations. To demonstrate the effect of selected Bacillus strains on rhizosphere microbial community, soil microbial diversity and abundance were evaluated with Illumina MiSeq sequencing, and primer sets of 341F/805R and ITS3/ITS4 were used for bacterial and fungal communities, respectively. As a result, when the bacterial strains were inoculated and then salinity stress was imposed, the inoculation decreases the stress susceptibility including reduction in lipid peroxidation, enhanced pigmentation and proline accumulation which subsequently resulted in better plant growth. However, bacterial inoculations did not affect diversity (observed OTUs, ACE, Chao1 and Shannon) and structure (principle coordinate analysis) of microbial communities under salinity stress. Furthermore, relative abundance in microbial communities had no significant difference between bacterial treated- and untreated-soils under salinity stress. CONCLUSION: Inoculation of Bacillus strains could affect plant responses and soil pH of tomato plants under salinity stress, whereas microbial diversity and abundance had no significant difference by the bacterial treatments. These findings demonstrated that Bacillus strains could alleviate plant's salinity damages by regulating pigments, proline, and MDA contents without significant changes of microbial community in tomato plants, and can be used as effective biostimulators against salinity stress for sustainable agriculture.

Screening Rice Cultivars for Resistance to Bacterial Leaf Blight

  • Fred, Agaba Kayihura;Kiswara, Gilang;Yi, Gihwan;Kim, Kyung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.938-945
    • /
    • 2016
  • Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious threats to rice production. In this study, screening of rice for resistance to BLB was carried out at two different times and locations; that is, in a greenhouse during winter and in an open field during summer. The pathogenicity of Xoo race K1 was tested on 32 Korean rice cultivars. Inoculation was conducted at the maximum tillering stage, and the lesion length was measured after 14 days of inoculation. Five cultivars, Hanareum, Namcheon, Samgdeok, Samgang, and Yangjo, were found to be resistant in both the greenhouse and open-field screenings. Expression of the plant defense-related genes JAmyb, OsNPR1, OsPR1a, OsWRKY45, and OsPR10b was observed in resistant and susceptible cultivars by qRT-PCR. Among the five genes tested, only OsPR10b showed coherent expression with the phenotypes. Screening of resistance to Xoo in rice was more accurate when conducted in open fields in the summer cultivation period than in greenhouses in winter. The expression of plant defense-related genes after bacterial inoculation could give another perspective in elucidating defense mechanisms by using both resistant and susceptible individuals.

Protection of Tobacco Plants from Bacterial Wilt with Avirulent Bacteriocin-Producing Strains of Pseudomonas solanacearum (비병원성 Bacteriocin 생성 Pseudomonas solanacearum을 이용한 담배 세균성마름병 방제)

  • 이영근
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.13 no.2
    • /
    • pp.42-47
    • /
    • 1991
  • Control effect of an avirulent bacterlocin-producing strain(ABPS) Y6l-1 of Pseudomonas solanacearum on bacterial wilt was 58.8 % when the bacterial suspension had poured onto the rhizosphere soil of tobacco cultivar NC82 on one day before transplanting to the field and of hilling time. Until eight weeks after inoculation, survival of the strain on rhizoplane and in stem of the plants inoculated was better than that of other four strains tested. It suggested that survival of the ABPS in and on the plants should be supported for the sufficient protection.

  • PDF

Inhibitory Activity of Bacterial Isolate Pseudomonas sp. KTB61 against Tobacco Mosaic Virus(TMV) Infection to Tobacco Plants (세균 분리주 KTB61의 담배 모자이크 바이러스(TMV) 감염 억제 효과)

  • 김영숙;여운형;유승헌;김갑식
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.1
    • /
    • pp.7-12
    • /
    • 2002
  • During the screening or antiviral substances having inhibitory effect on tobacco mosaic virus(TMV) infection to tobacco plants, we found that a bacterial isolate, KTB61, which was identified as a Pseudomonas sp., strongly inhibited the formation of TMV local lesions. When the culture filtrate from KTB61 was applied on the upper surface of leaves of N. tabaccum Xanthi-nc tobacco at the same time of or 24 hours before TMV inoculation, almost complete inhibition was achieved. Incidence of systemic TMV infection to the susceptible tobacco cultivar, NC82, was reduced by 95% when TMV was inoculated onto the upper surface of leaves 24 hours after spraying the culture filtrate. Also 75∼80% of inhibitory effect was obtained by the inoculation of TMV onto the under surface of the leaves treated with culture filtrate 24 hours beforehand. In field trials, the TMV infection was reduced by 96.5% when the tobacco seedlings, N. tabaccum cv. NC82, were soaked with culture filtrate before transplanting.

Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge

  • Lee, Sang-Ah;Lee, Nakyeong;Oh, Hee-Mock;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1434-1443
    • /
    • 2019
  • Although chemical oxygen demand (COD) is an important issue for wastewater treatment, COD reduction with microalgae has been less studied compared to nitrogen or phosphorus removal. COD removal is not efficient in conventional wastewater treatment using microalgae, because the algae release organic compounds, thereby finally increasing the COD level. This study focused on enhancing COD removal and meeting the effluent standard for discharge by optimizing sludge inoculation timing, which was an important factor in forming a desirable algae/bacteria consortium for more efficient COD removal and higher biomass productivity. Activated sludge has been added to reduce COD in many studies, but its inoculation was done at the start of cultivation. However, when the sludge was added after 3 days of cultivation, at which point the COD concentration started to increase again, the algal growth and biomass productivity were higher than those of the initial sludge inoculation and control (without sludge). Algal and bacterial cell numbers measured by qPCR were also higher with sludge inoculation at 3 days later. In a semi-continuous cultivation system, a hydraulic retention time of 5 days with sludge inoculation resulted in the highest biomass productivity and N/P removal. This study achieved a further improved COD removal than the conventional microalgal wastewater treatment, by introducing bacteria in activated sludge at optimized timing.

Resistance Induction and Enhanced Tuber Production by Pre-inoculation with Bacterial Strains in Potato Plants against Phytophthora infestans

  • Kim, Hyo-Jeong;Jeun, Yong-Chull
    • Mycobiology
    • /
    • v.34 no.2
    • /
    • pp.67-72
    • /
    • 2006
  • Efficacy of resistance induction by the bacterial isolates Pseudomonas putida (TRL2-3), Micrococcus luteus (TRK2-2) and Flexibacteraceae bacterium (MRL412), which were isolated from the rhizosphere of plants growing in Jeju Mountain, were tested in a greenhouse. The disease severity caused by Phytophthora infestans was effectively reduced in the potato plants pre-inoculated with bacterial isolates compared with those of the untreated control plants growing in a greenhouse. In order to estimate the level of protection by the bacterial isolates, Mancozeb WP (Diesen $M^{(R)}$, Kyong nong) and DL-3-amino butyric acid (BABA) were pre-treated, whereas Dimethomorph WP ($Forum^{(R)}$, Kyong nong) and phosphonic acid ($H_{3}PO_{3}$) were post-treated the challenge inoculation with the pathogen. Disease severities of chemical pre-treated as well as post-treated plants were reduced compare to those of the untreated. The disease reduction in the plants pre-treated with Mancozeb WP was the highest, whereas that of post-treated with Dimethomorph WP was the lowest. The yields of plants pre-inoculated with three bacterial isolates were greatly increased than those of control plants. These results suggest that biological control by bacterial isolates might be an alternative strategy against late blight disease in potato plants growing in greenhouse.

Paddy Weeds Serving as the Possible Reservoirs for Rice Bacterial Leaf Blight (답잡초를 대상으로 벼 흰빛잎아름병 기주절위구명)

  • Kim, K.U.;Jeh, S.Y.;Sohn, J.K.;Lee, S.K.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.26 no.1
    • /
    • pp.40-44
    • /
    • 1981
  • This study was conducted to identify the possibility of paddy weeds served as the host plant of bacterial leaf blight, using various bacterial groups and inoculation methods. The results obtained can be summarized as follows. 1. Alopecurns spp., Setaria viridis P. Beauv., and Leersia juponica Makino were identified the most susceptible to bacterial leaf blight, similar to Milyang 23 which was used as a susceptible check variety. The others such as Digitaria adscendens Hem., Eleusine indic aGaertin., Cyperns serotinus Rottb, Cyperns difformis L. showed slight infection but most of broadleaf weeds were resistant to bacterial leaf blight. 2. Weed species showing early susceptibility maintained their susceptibility throughout the growth stages. Group I of bacterial leaf blight was the most effective to develop infection symptom to weeds. 3. Pin and scissor inoculation methods were more effective mean for infection than spray method which was used without wound.

  • PDF