• Title/Summary/Keyword: BackPropagation

Search Result 1,469, Processing Time 0.02 seconds

A Modified Error Back Propagation Algorithm Adding Neurons to Hidden Layer (은닉층 뉴우런 추가에 의한 역전파 학습 알고리즘)

  • 백준호;김유신;손경식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.4
    • /
    • pp.58-65
    • /
    • 1992
  • In this paper new back propagation algorithm which adds neurons to hidden layer is proposed. this proposed algorithm is applied to the pattern recognition of written number coupled with back propagation algorithm through omitting redundant learning. Learning rate and recognition rate of the proposed algorithm are compared with those of the conventional back propagation algorithm and the back propagation through omitting redundant learning. The learning rate of proposed algorithm is 4 times as fast as the conventional back propagation algorithm and 2 times as fast as the back propagation through omitting redundant learning. The recognition rate is 96.2% in case of the conventional back propagation algorithm, 96.5% in case of the back propagation through omitting redundant learning and 97.4% in the proposed algorithm.

  • PDF

A Study on Construction of Back-propagation Architecture for ARMA data (ARMA 데이터에 대한 Back-propagation 신경망의 구조)

  • 김나영;김희영
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.17-22
    • /
    • 2000
  • 시계열 자료를 분석할 때 쉽게 접근하는 통계적 방법은 ARMA 모형이며 신경망 학습 방법 중에서는 다층 퍼셉트론에서의 Back-propagation 알고리즘이 일반적이다. Back-propagation을 비롯한 신경망 학습의 구조는 자료의 특성에 따라 경험적으로 결정하는 것으로 알려져 있다. 그러나 바로 이 점이 신경망 학습방법의 이용을 어렵게 하는 요인이기도 하다. 본 연구는 ARMA 모형 중 몇 개 유형의 자료에 대하여 Back-propagation 알고리즘을 적용함에 있어 어떠한 구조로 학습하는 것이 효율적인가를 입력층과 은닉층의 크기, 활성화 함수를 중심으로 검토하였다.

  • PDF

The Structure of Boundary Decision Using the Back Propagation Algorithms (역전파 알고리즘을 이용한 경계결정의 구성에 관한 연구)

  • Lee, Ji-Young
    • The Journal of Information Technology
    • /
    • v.8 no.1
    • /
    • pp.51-56
    • /
    • 2005
  • The Back propagation algorithm is a very effective supervised training method for multi-layer feed forward neural networks. This paper studies the decision boundary formation based on the Back propagation algorithm. The discriminating powers of several neural network topology are also investigated against five manually created data sets. It is found that neural networks with multiple hidden layer perform better than single hidden layer.

  • PDF

Estimating Evapotranspiration of Rice Crop Using Neural Networks -Application of Back-propagation and Counter-propagation Algorithm- (신경회로망을 이용한 수도 증발산량 예측 -백프로파게이션과 카운터프로파게이션 알고리즘의 적용-)

  • 이남호;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.88-95
    • /
    • 1994
  • This paper is to evaluate the applicability of neural networks to the estimation of evapotranspiration. Two neural networks were developed to forecast daily evapotranspiration of the rice crop with back-propagation and counter-propagation algorithm. The neural network trained by back-propagation algorithm with delta learning rule is a three-layer network with input, hidden, and output layers. The other network with counter-propagation algorithm is a four-layer network with input, normalizing, competitive, and output layers. Training neural networks was conducted using daily actual evapotranspiration of rice crop and daily climatic data such as mean temperature, sunshine hours, solar radiation, relative humidity, and pan evaporation. During the training, neural network parameters were calibrated. The trained networks were applied to a set of field data not used in the training. The created response of the back-propagation network was in good agreement with desired values and showed better performances than the counter-propagation network did. Evaluating the neural network performance indicates that the back-propagation neural network may be applied to the estimation of evapotranspiration of the rice crop. This study does not provide with a conclusive statement as to the ability of a neural network to evapotranspiration estimating. More detailed study is required for better understanding and evaluating the behavior of neural networks.

  • PDF

A study on the realization of color printed material check using Error Back-Propagation rule (오류 역전파법으로구현한 컬러 인쇄물 검사에 관한 연구)

  • 한희석;이규영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.560-567
    • /
    • 1998
  • This paper concerned about a imputed color printed material image in camera to decrease noise and distortion by processing median filtering with input image to identical condition. Also this paper proposed the way of compares a normal printed material with an abnormal printed material color tone with trained a learning of the error back-propagation to block classification by extracting five place from identical block(3${\times}$3) of color printed material R, G, B value. As a representative algorithm of multi-layer perceptron the error Back-propagation technique used to solve complex problems. However, the Error Back-propagation is algorithm which basically used a gradient descent method which can be converged to local minimum and the Back Propagation train include problems, and that may converge in a local minimum rather than get a global minimum. The network structure appropriate for a given problem. In this paper, a good result is obtained by improve initial condition and adjust th number of hidden layer to solve the problem of real time process, learning and train.

  • PDF

Edge detection method using unbalanced mutation operator in noise image (잡음 영상에서 불균등 돌연변이 연산자를 이용한 효율적 에지 검출)

  • Kim, Su-Jung;Lim, Hee-Kyoung;Seo, Yo-Han;Jung, Chai-Yeoung
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.673-680
    • /
    • 2002
  • This paper proposes a method for detecting edge using an evolutionary programming and a momentum back-propagation algorithm. The evolutionary programming does not perform crossover operation as to consider reduction of capability of algorithm and calculation cost, but uses selection operator and mutation operator. The momentum back-propagation algorithm uses assistant to weight of learning step when weight is changed at learning step. Because learning rate o is settled as less in last back-propagation algorithm the momentum back-propagation algorithm discard the problem that learning is slow as relative reduction because change rate of weight at each learning step. The method using EP-MBP is batter than GA-BP method in both learning time and detection rate and showed the decreasing learning time and effective edge detection, in consequence.

Imaging of seismic sources by time-reversed wave propagation with staggered-grid finite-difference method (지진원 영상화를 위한 엇갈린 격자 유한 차분법을 이용한 지진파 역행 전파 모의)

  • Sheen, Dong-Hoon;Hwang, Eui-Hong;Ryoo, Yong-Gyu;Youn, Yong-Hoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.25-32
    • /
    • 2006
  • We present a imaging method of seismic sources by time reversal propagation of seismic waves. Time-reversal wave propagation is actively used in medical imaging, non destructive testing and waveform tomography. Time-reversal wave propagation is based on the time-reversal invariance and the spatial reciprocity of the wave equation. A signal is recorded by an array of receivers, time-reversed and then back-propagated into the medium. The time-reversed signal propagates back into the same medium and the energy refocuses back at the source location. The increasing power of computers and numerical methods makes it possible to simulate more accurately the propagation of seismic waves in heterogenous media. In this work, a staggered-grid finite-difference solution of the elastic wave equation is employed for the wave propagation simulation. With numerical experiments, we show that the time-reversal imaging will enable us to explore the spatio-temporal history of complex earthquake.

  • PDF

Magnetic Flux Leakage (MFL) based Defect Characterization of Steam Generator Tubes using Artificial Neural Networks

  • Daniel, Jackson;Abudhahir, A.;Paulin, J. Janet
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.34-42
    • /
    • 2017
  • Material defects in the Steam Generator Tubes (SGT) of sodium cooled fast breeder reactor (PFBR) can lead to leakage of water into sodium. The water and sodium reaction will lead to major accidents. Therefore, the examination of steam generator tubes for the early detection of defects is an important requirement for safety and economic considerations. In this work, the Magnetic Flux Leakage (MFL) based Non Destructive Testing (NDT) technique is used to perform the defect detection process. The rectangular notch defects on the outer surface of steam generator tubes are modeled using COMSOL multiphysics 4.3a software. The obtained MFL images are de-noised to improve the integrity of flaw related information. Grey Level Co-occurrence Matrix (GLCM) features are extracted from MFL images and taken as input parameter to train the neural network. A comparative study on characterization have been carried out using feed-forward back propagation (FFBP) and cascade-forward back propagation (CFBP) algorithms. The results of both algorithms are evaluated with Mean Square Error (MSE) as a prediction performance measure. The average percentage error for length, depth and width are also computed. The result shows that the feed-forward back propagation network model performs better in characterizing the defects.

Design of the Fixed Size Systolic Array for the Back-propagation ANN (역전파 ANN을 위한 고정 크기 시스톨릭 어레이 설계)

  • 김지연;장명숙;박기현
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.691-693
    • /
    • 1998
  • A parallel processing systolic array reduces execution time of the Back-propagation ANN. But, systolic array must be designed whenever the number of neurons in the ANN differ. To use the systolic array which is aready designed ad a fixed size VLSI chip, partition of the problem size systolic array must be performed. This paper presents a design method of the fixed size systolic array for the Back-propagation algorthm using LSGP and LPGS partion method

  • PDF

An Implementation and Analysis of the Container Identifier Recognition System using back-propagation algorithm (Back-propagation 알고리즘을 이용한 컨테이너 식별자 인식 시스템의 구현 및 분석)

  • 이만형;황상훈;정신규;황대훈
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.10a
    • /
    • pp.254-259
    • /
    • 1998
  • 오늘날 컨테이너의 과다한 물동량 증가로 인하여 수작업으로 이루어지는 컨테이너 식별자를 처리하는데 어려움을 겪고 있는 가운데, 이를 자동으로 인식하고 그 결과를 항만 물류 처리 자동화 시스템에 적용하고자 하는 필요성이 대두되고 있다. 이에 본 논문에서는 컨테이너의 인식 처리를 자동화하기 위한 방안으로 컨테이너의 식별자 인식에 신경망 알고리즘의 하나인 Back-propagation을 적용하였으며, BP 알고리즘을 적용하기 위해서 적절한 scaling 비율을 구하고, 학습 DB를 구축하여 기존의 식별자 인식보다 신속하고 정확한 처리가 가능하도록 구현하였다.

  • PDF