• 제목/요약/키워드: Back-propagation learning

검색결과 528건 처리시간 0.021초

은닉층 뉴우런 추가에 의한 역전파 학습 알고리즘 (A Modified Error Back Propagation Algorithm Adding Neurons to Hidden Layer)

  • 백준호;김유신;손경식
    • 전자공학회논문지B
    • /
    • 제29B권4호
    • /
    • pp.58-65
    • /
    • 1992
  • In this paper new back propagation algorithm which adds neurons to hidden layer is proposed. this proposed algorithm is applied to the pattern recognition of written number coupled with back propagation algorithm through omitting redundant learning. Learning rate and recognition rate of the proposed algorithm are compared with those of the conventional back propagation algorithm and the back propagation through omitting redundant learning. The learning rate of proposed algorithm is 4 times as fast as the conventional back propagation algorithm and 2 times as fast as the back propagation through omitting redundant learning. The recognition rate is 96.2% in case of the conventional back propagation algorithm, 96.5% in case of the back propagation through omitting redundant learning and 97.4% in the proposed algorithm.

  • PDF

Estimating Regression Function with $\varepsilon-Insensitive$ Supervised Learning Algorithm

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권2호
    • /
    • pp.477-483
    • /
    • 2004
  • One of the major paradigms for supervised learning in neural network community is back-propagation learning. The standard implementations of back-propagation learning are optimal under the assumptions of identical and independent Gaussian noise. In this paper, for regression function estimation, we introduce $\varepsilon-insensitive$ back-propagation learning algorithm, which corresponds to minimizing the least absolute error. We compare this algorithm with support vector machine(SVM), which is another $\varepsilon-insensitive$ supervised learning algorithm and has been very successful in pattern recognition and function estimation problems. For comparison, we consider a more realistic model would allow the noise variance itself to depend on the input variables.

  • PDF

잡음 영상에서 불균등 돌연변이 연산자를 이용한 효율적 에지 검출 (Edge detection method using unbalanced mutation operator in noise image)

  • 김수정;임희경;서요한;정채영
    • 정보처리학회논문지B
    • /
    • 제9B권5호
    • /
    • pp.673-680
    • /
    • 2002
  • 이 논문은 진화 프로그래밍과 개선된 역전파 알고리즘을 이용한 에지 검출 방법을 제안한다. 진화 프로그래밍은 알고리즘의 성능저하와 계산비용을 고려하여 교차 연산은 수행하지 않고, 선택연산자와 돌연변이 연산자를 사용한다. 개선된 역전파 알고리즘은 학습단계에서 연결강도를 변화시킬 때 이전학습단계의 연결강도를 보조적으로 활용하는 방법이다. 이 개선된 역전파 알고리즘은 학습률 $\alpha$를 작은값으로 설정하기 때문에 각 학습단계에서의 연결강도 변화량이 기존의 방법에 비해 상대적으로 줄어들게 되어 학습이 느려지는 문제점을 해결하였다. 실험결과 학습시간과 검출률에 있어서 GA-BP(GA : Genetic Algorithm BP : Back-Propagation)를 이용한 방법보다 제안한 EP-MBP(EP : Evolutionary Programming, MBP :Momentum Back-Propagation)를 이용하여 학습시킨 방법이 학습시간의 단축과 효율적인 에지 검출 결과를 얻을 수 있었다.

점진적 학습영역 확장에 의한 다층인식자의 학습능력 향상 (Improvement of Learning Capabilities in Multilayer Perceptron by Progressively Enlarging the Learning Domain)

  • 최종호;신성식;최진영
    • 전자공학회논문지B
    • /
    • 제29B권1호
    • /
    • pp.94-101
    • /
    • 1992
  • The multilayer perceptron, trained by the error back-propagation learning rule, has been known as a mapping network which can represent arbitrary functions. However depending on the complexity of a function and the initial weights of the multilayer perceptron, the error back-propagation learning may fall into a local minimum or a flat area which may require a long learning time or lead to unsuccessful learning. To solve such difficulties in training the multilayer perceptron by standard error back-propagation learning rule, the paper proposes a learning method which progressively enlarges the learning domain from a small area to the entire region. The proposed method is devised from the investigation on the roles of hidden nodes and connection weights in the multilayer perceptron which approximates a function of one variable. The validity of the proposed method was illustrated through simulations for a function of one variable and a function of two variable with many extremal points.

  • PDF

은닉층 노드의 생성추가를 이용한 적응 역전파 신경회로망의 학습능률 향상에 관한 연구 (On the enhancement of the learning efficiency of the adaptive back propagation neural network using the generating and adding the hidden layer node)

  • 김은원;홍봉화
    • 대한전자공학회논문지TE
    • /
    • 제39권2호
    • /
    • pp.66-75
    • /
    • 2002
  • 본 논문에서는 역전파 신경회로망의 학습능률을 향상시키기 위한 방법으로 발생한 오차에 따라서 학습파라미터와 은닉층의 수를 적응적으로 변경시킬 수 있는 적응 역 전파 학습알고리즘을 제안하였다. 제안한 알고리즘은 역전파 신경회로망이 국소점으로 수렴하는 문제를 해결할 수 있고 최적의 수렴환경을 만들 수 있다. 제안된 알고리즘을 평가하기 위하여 배타적 논리합, 3-패리티 및 7${\times}$5 영문자 폰트의 학습을 이용하였다. 실험결과, 기존에 제안된 알고리즘들에 비하여 국소점에 빠지게 되는 경우가 감소하였고 약 17.6%~64.7%정도 학습능률이 향상하였다.

오류 역전파법으로구현한 컬러 인쇄물 검사에 관한 연구 (A study on the realization of color printed material check using Error Back-Propagation rule)

  • 한희석;이규영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.560-567
    • /
    • 1998
  • This paper concerned about a imputed color printed material image in camera to decrease noise and distortion by processing median filtering with input image to identical condition. Also this paper proposed the way of compares a normal printed material with an abnormal printed material color tone with trained a learning of the error back-propagation to block classification by extracting five place from identical block(3${\times}$3) of color printed material R, G, B value. As a representative algorithm of multi-layer perceptron the error Back-propagation technique used to solve complex problems. However, the Error Back-propagation is algorithm which basically used a gradient descent method which can be converged to local minimum and the Back Propagation train include problems, and that may converge in a local minimum rather than get a global minimum. The network structure appropriate for a given problem. In this paper, a good result is obtained by improve initial condition and adjust th number of hidden layer to solve the problem of real time process, learning and train.

  • PDF

Back-Propagation방법의 수렴속도 및 학습정확도의 개선 (Acceleration the Convergence and Improving the Learning Accuracy of the Back-Propagation Method)

  • 이윤섭;우광방
    • 대한전기학회논문지
    • /
    • 제39권8호
    • /
    • pp.856-867
    • /
    • 1990
  • In this paper, the convergence and the learning accuracy of the back-propagation (BP) method in neural network are investigated by 1) analyzing the reason for decelerating the convergence of BP method and examining the rapid deceleration of the convergence when the learning is executed on the part of sigmoid activation function with the very small first derivative and 2) proposing the modified logistic activation function by defining, the convergence factor based on the analysis. Learning on the output patterns of binary as well as analog forms are tested by the proposed method. In binary output patter, the test results show that the convergence is accelerated and the learning accuracy is improved, and the weights and thresholds are converged so that the stability of neural network can be enhanced. In analog output patter, the results show that with extensive initial transient phenomena the learning error is decreased according to the convergence factor, subsequently the learning accuracy is enhanced.

  • PDF

적응 역전파 신경회로망의 은닉 층 노드 수 설정에 관한 연구 (On the set up to the Number of Hidden Node of Adaptive Back Propagation Neural Network)

  • 홍봉화
    • 정보학연구
    • /
    • 제5권2호
    • /
    • pp.55-67
    • /
    • 2002
  • 본 논문에서는 학습계수를 발생한 오차에 따라서 적응적으로 갱신할 수 있는 학습알고리즘에 은닉 노드의 수를 다양하게 변화시킬 수 있는 적응 역 전파(Back Propagation) 알고리즘을 제안하였다. 제안한 알고리즘은 국소점을 벗어날 수 있는 것으로 기대되고, 수렴환경에 알맞은 은닉 노드의 수를 설정할 수 있다. 모의실험에서는 두 가지의 학습패턴을 가지고 실험하였다. 하나는 X-OR 문제에 대한 학습과 또 다른 하나는 $7{\times}5$ 도트 영문자 폰트에 에 대한 학습이다. 두 모의실험에서 국소 점으로 안주할 확률은 감소하였다. 또한, 영문자 폰트 학습에서의 신경회로망은 기존의 역 전파 알고리즘과 HNAD 알고리즘에 비하여 약 41.56%~58.28%정도 학습효율이 향상됨을 고찰하였다.

  • PDF

역전달 신경회로망을 이용한 심전도 파형의 부정맥 분류 (Classification of ECG Arrhythmia Signals Using Back-Propagation Network)

  • 권오철;최진영
    • 대한의용생체공학회:의공학회지
    • /
    • 제10권3호
    • /
    • pp.343-350
    • /
    • 1989
  • A new algorithm classifying ECG Arrhythmia signals using Back-propagation network is proposed. The base-line of ECG signal is detected by high pass filter and probability density function then input data are normalized for learning and classifying. In addition, ECG data are scanned to classify Arrhythmia signal which is hard to find R-wave. A two-layer perceptron with one hidden layer along with error back-propagation learning rule is utilized as an artificial neural network. The proposed algorithm shows outstanding performance under circumstances of amplitude variation, baseline wander and noise contamination.

  • PDF

부분 학습구조의 신경회로와 로보트 역 기구학 해의 응용 (A neural network with local weight learning and its application to inverse kinematic robot solution)

  • 이인숙;오세영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.36-40
    • /
    • 1990
  • Conventional back propagation learning is generally characterized by slow and rather inaccurate learning which makes it difficult to use in control applications. A new multilayer perception architecture and its learning algorithm is proposed that consists of a Kohonen front layer followed by a back propagation network. The Kohonen layer selects a subset of the hidden layer neurons for local tuning. This architecture has been tested on the inverse kinematic solution of robot manipulator while demonstrating its fast and accurate learning capabilities.

  • PDF