• 제목/요약/키워드: Back-contact layer

검색결과 65건 처리시간 0.026초

다결정 다공질 실리콘 나노구조의 전계 방출 특성 (Field Emission properties of Porous Polycrystalline silicon Nano-Structure)

  • 이주원;김훈;박종원;이윤희;장진;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.69-72
    • /
    • 2002
  • We establish a visible light emission from porous polycrystalline silicon nano structure(PPNS). The PPNS layer are formed on heavily doped n-type Si substrate. 2um thickness of undoped polycrystalline silicon deposited using LPCVD (Low Pressure Chemical Vapor Deposition) anodized in a HF: ethanol(=1:1) as functions of anodizing conditions. And then a PPNS layer thermally oxidized for 1 hr at $900^{\circ}C$. Subsequently, thin metal Au as a top electrode deposited onto the PPNS surface by E-beam evaporator and, in order to establish ohmic contact, an thermally evaporated Al was deposited on the back side of a Si-substrate. When the top electrode biased at +6V, the electron emission observed in a PPNS which caused by field-induces electron emission through the top metal. Among the PPNSs as functions of anodization conditions, the PPNS anodized at a current density of $10mA/cm^{2}$ for 20 sec has a lower turn-on voltage and a higher emission current. Furthermore, the behavior of electron emission is uniformly maintained.

  • PDF

Crystal structure analysis of CIGS solar cell absorber by using in-situ XRD

  • 김혜란;김용배;박승일
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.319-319
    • /
    • 2010
  • 칼코젠계 태양전지의 광흡수층으로 사용되는 CuInSe2은 직접천이형 반도체로 광흡수계수가 $1{\times}105cm-1$로 매우 높고, 전기광학적 안정성이 우수하여 실리콘 결정질 태양전지를 대체할 고효율 태양전지로 각광받고 있다. 광흡수층의 밴드갭 에너지가 증가하면 태양전지의 개방전압(Voc)이 증가하여 광변환 효율을 향상시킬 수 있으므로, CuInSe2에서 In의 일부를 Ga으로 치환하여 에너지 밴드갭의 변화를 주는 연구가 많이 진행되고 있다. 그러나 화합물내의 Ga 조성비가 증가하면 단락전류(Jsc), 충진률(fill factor)이 낮아져 태양전지 효율을 저하시키게 되므로 CIGS 박막의 적절한 화합물 조성비를 갖도록 최적조건을 확립하는 것이 매우 중요하다. 본 실험에서는 광흡수층 형성을 위해 Sputtering법으로 금속 전구체를 증착하고, 고온에서 셀렌화 열처리를 수행하는 Sequential process(2단계 증착법)를 이용하였다. soda-lime glass 기판에 Back contact으로 Mo를 증착하고, 1단계로 CuIn0.7Ga0.3 조성비의 타겟을 이용하여 Sputtering법으로 $0.5{\sim}2{\mu}m$ 두께의 CIG 전구체를 증착하였다. 2단계로 CIG 전구체의 셀렌화열처리를 통하여 CIGS 화합물 구조의 박막을 형성시켰다. 이때 형성된 CIGS 화합물 박막의 두께는 동일하게 함으로써, 열처리온도에 의한 박막의 구조변화를 비교하였다. 증착된 CIGS 박막은 고온 엑스선회절분석을 통해 증착 두께와 온도 변화에 따른 CIGS 층의 구조 변화를 확인하고, 동일한 증착조건으로 Buffer layer, Window layer, Grid 전극을 형성하여 태양전지셀 특성을 평가함으로써 CIGS 태양전지 광흡수층의 결정구조에 따른 광변환 효율을 비교하였다.

  • PDF

Mo:Na 두께에 따른 Cu(In,Ga)Se2 박막의 물성과 효율변화 (The Physical Properties and Efficiencies of Cu(In,Ga)Se2 Thin Films Depending on the Mo:Na Thickness)

  • 신윤학;김명한
    • 한국재료학회지
    • /
    • 제24권3호
    • /
    • pp.123-128
    • /
    • 2014
  • To realize high-performance thin film solar cells, we prepared CIGS by the co-evaporation technique on both sodalime and Corning glass substrates. The structural and efficient properties were investigated by varying the thickness of the Mo:Na layer, where the total thickness of the back contact was fixed at 1${\mu}m$. As a result, when the Mo:Na thickness was 300 nm on soda-lime glass, the measured Na content was 0.28 %, the surface morphology was a plate-like compact structure, and the crystallinity by XRD showed a strong peak of (112) preferential orientation together with relatively intense (220) and (204) peaks as the secondary phases influenced crystal formation. In addition, the substrates on soda-lime glass effected the lowest surface roughness of 2.76 nm and the highest carrier density and short circuit current. Through the optimization of the Mo:Na layer, a solar conversion efficiency of 11.34% was achieved. When using the Corning glass, a rather low conversion efficiency of 9.59% was obtained. To determine the effects of the concentration of sodium and in order to develop a highefficiency solar cells, a very small amount of sodium was added to the soda lime glass substrate.

이온빔의 공정변수에 따른 Cu/Polyimide 박막의 접착력향상에 관한 연구 (A Study on the Improvement of Adhesion according to the Process Variables of Ion Beam in the Cu/Polyimide Thin Film)

  • 신윤학;김명한;최재하
    • 한국재료학회지
    • /
    • 제15권7호
    • /
    • pp.458-464
    • /
    • 2005
  • In microelectronics packaging, the reliability of the metal/polymer interfaces is an important issue because the adhesion strength between dissimilar materials is often inherently poor. The modification of polymer surfaces by ion beam irradiation and rf plasma is commonly used to enhance the adhesion strength of the interface. T-peel strengths were measured using a Cu/polyimide system under varying $N_2^+$ ion beam irradiation conditions for pretreatment. The measured T-peel strength showed reversed camel back shape regarding the fixed metal-layer thickness, which was quite different from the results of the 90° peel test. The elementary analysis suggests that the variation of the T-peel strength is a combined outcome of the plastic bending work of the metal and polymer strips. The results indicate that the peel strength increases with $N_2^+$ ion beam irradiation energy at the fixed metal-layer thickness.

이온빔에 의한 Cu/Polyimide 표면개질에 따른 접착력향상에 관한 연구 (A Study on the Improvement of Adhesion according to the Surface Modification of Cu/Polyimide Films by ion Beam Irradiation)

  • 신윤학;추준식;이승우;정찬회;김명한
    • 한국재료학회지
    • /
    • 제15권1호
    • /
    • pp.42-46
    • /
    • 2005
  • In microelectronics packaging, the reliability of the metal/polymer interfaces is an important issue because the adhesion strength between dissimilar materials is often inherently poor. The modification of polymer sufaces by ion beam irradiation and rf plasma are commonly used to enhance the adhesion strength of the interface. T-peel strengths were measured using a Cu/polyimide system under varying $Ar^+$ ion beam irradiation pretreatment conditions. The measured T-peel strength showed reversed camel back shape regarding the fixed metal-layer thickness, which was quite different from the results of the $90^{\circ}$ peel test. The elementary analysis suggests that the variation of the T-peel strength is a combined outcome of the plastic bending work of the metal and polymer strips. The results indicate that the peel strength increases with $Ar^+$ ion beam irradiation energy at the fixed metal-layer thickness.

IBC형 태양전지를 위한 균일하게 증착된 비정질 실리콘 층의 광섬유 레이저를 이용한 붕소 도핑 방법 (Boron Doping Method Using Fiber Laser Annealing of Uniformly Deposited Amorphous Silicon Layer for IBC Solar Cells)

  • 김성철;윤기찬;경도현;이영석;권태영;정우원;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.456-456
    • /
    • 2009
  • Boron doping on an n-type Si wafer is requisite process for IBC (Interdigitated Back Contact) solar cells. Fiber laser annealing is one of boron doping methods. For the boron doping, uniformly coated or deposited film is highly required. Plasma enhanced chemical vapor deposition (PECVD) method provides a uniform dopant film or layer which can facilitate doping. Because amorphous silicon layer absorption range for the wavelength of fiber laser does not match well for the direct annealing. In this study, to enhance thermal affection on the existing p-a-Si:H layer, a ${\mu}c$-Si:H intrinsic layer was deposited on the p-a-Si:H layer additionally by PECVD. To improve heat transfer rate to the amorphous silicon layer, and as heating both sides and protecting boron eliminating from the amorphous silicon layer. For p-a-Si:H layer with the ratio of $SiH_4$ : $B_2H_6$ : $H_2$ = 30 : 30 : 120, at $200^{\circ}C$, 50 W, 0.2 Torr for 30 minutes, and for ${\mu}c$-Si:H intrinsic layer, $SiH_4$ : $H_2$ = 10 : 300, at $200^{\circ}C$, 30 W, 0.5 Torr for 60 minutes, 2 cm $\times$ 2 cm size wafers were used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 20 ~ 27 % of power, 150 ~ 160 kHz, 20 ~ 50 mm/s of marking speed, and $10\;{\sim}\;50 {\mu}m$ spacing with continuous wave mode of scanner lens showed the correlation between lifetime and sheet resistance as $100\;{\Omega}/sq$ and $11.8\;{\mu}s$ vs. $17\;{\Omega}/sq$ and $8.2\;{\mu}s$. Comparing to the singly deposited p-a-Si:H layer case, the additional ${\mu}c$-Si:H layer for doping resulted in no trade-offs, but showed slight improvement of both lifetime and sheet resistance, however sheet resistance might be confined by the additional intrinsic layer. This might come from the ineffective crystallization of amorphous silicon layer. For the additional layer case, lifetime and sheet resistance were measured as $84.8\;{\Omega}/sq$ and $11.09\;{\mu}s$ vs. $79.8\;{\Omega}/sq$ and $11.93\;{\mu}s$. The co-existence of $n^+$layeronthesamesurfaceandeliminating the laser damage should be taken into account for an IBC solar cell structure. Heavily doped uniform boron layer by fiber laser brings not only basic and essential conditions for the beginning step of IBC solar cell fabrication processes, but also the controllable doping concentration and depth that can be established according to the deposition conditions of layers.

  • PDF

초박형 태양전지의 Porous Si Layer Transfer 기술 적용을 위한 전기화학적 실리콘 에칭 (Electrochemical Etching of Silicon in Porous Silicon Layer Transfer Process for Thin Film Solar Cell Fabrication)

  • 이주영;한원근;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제16권4호
    • /
    • pp.55-60
    • /
    • 2009
  • 불산과 에탄올 혼합용액에서 전기화학적 에칭을 통하여 다공성 실리콘 층을 제작하였다. 에칭 시 인가된 초음파의 주파수, 전류밀도, 에칭시간의 변화에 따른 다공성 실리콘 층의 변화를 확인하였다. 초음파를 가해주지 않은 시편은 표면에 특별한 변화가 일어나지 않았으나, 초음파 진동자의 주파수가 40 kHz와 130 kHz인 초음파 발생조에서 실험한 시편을 관찰한 결과, 가해준 초음파의 주파수가 높을수록 다공성 실리콘 층의 기공의 크기가 더 커지고 실리콘 표면에서의 에칭이 더 균일하게 일어났다. 후면접촉 에칭조와 current shield를 이용한 결과 다공성 실리콘 층 전면에 걸쳐 균일하게 기공이 발생하였다. 다공성 실리콘 층의 기공의 크기는 전류밀도가 증가함에 따라 함께 증가하였고, 에칭 시간에는 영향을 받지 않았다.

  • PDF

Cu(InGa)$Se_2$ 광흡수막의 두께에 따른 태양전지의 전기광학 특성 (Electrical and Optical Properties with the Thickness of Cu(lnGa)$Se_2$ Absorber Layer)

  • 김석기;이정철;강기환;윤경훈;박이준;송진수;한상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.108-111
    • /
    • 2002
  • CIGS film has been fabricated on soda-lime glass, which is coated with Mo film. by multi-source evaporation process. The films has been prepared with thickness of 1.0 ${\mu}m$, 1.75${\mu}m$, 2.0${\mu}m$, 2.3${\mu}m$, and 3.0${\mu}m$. X-ray diffraction analysis with film thickness shows that CIGS films exhibit a strong (112) preferred orientation. Furthermore. CIGS films exhibited distinctly decreasing the full width of half-maximum and (112) preferred peak with film thickness. Also, The film's microstructure, such as the preferred orientation, the full width at half-maximum(FWHM), and the interplanar spacing were examined by X-ray diffraction. The preparation condition and the characteristics of the unit layers were as followings ; Mo back contact DC sputter, CIGS absorber layer : three-stage coevaporation, CdS buffer layer : chemical bath deposition, ZnO window layer : RF sputtering, $MgF_2$ antireflectance : E-gun evaporation

  • PDF

이중층 몰리브데늄을 후면전극으로 적용한 비진공법 CuInSe2 태양전지의 특성 (Characterization of Non-vacuum CuInSe2 Solar Cells Deposited on Bilayer Molybdenum)

  • 황지섭;윤희선;장윤희;이장미;이도권
    • Current Photovoltaic Research
    • /
    • 제8권2호
    • /
    • pp.45-49
    • /
    • 2020
  • Molybdenum (Mo) thin films are widely used as back contact in copper indium diselenide (CISe) solar cells. However, despite this, there are only few published studies on the properties of Mo and characteristics of CISe solar cells formed on such Mo substrates. In this studies, we investigated the properties of sputter deposited Mo bilayer, and fabricated non-vacuum CISe solar cells using bilayer Mo substrates. The changes in surface morphology and electrical resistivity were traced by varying the gas pressure during deposition of the bottom Mo layer. In porous surface structure, it was confirmed that the electrical resistivity of Mo bilayer was increased as the amount of oxygen bonded to the Mo atoms increased. The resulting solar cell characteristics vary as the bottom Mo layer deposition pressure, and the maximum solar cell efficiency was achieved when the bottom layer was deposited at 7 mTorr with a thickness of 100 nm and the top layer deposited at 3 mTorr with a thickness of 400 nm.

Mo 기판위의 NaF 중간층을 이용한 Cu(In,Ga)Se2 광흡수층의 Na 도핑특성에 관한 연구 (Na Doping Properties of Cu(In,Ga)Se2 Absorber Layer Using NaF Interlayer on Mo Substrate)

  • 박태정;신동협;안병태;윤재호
    • 한국재료학회지
    • /
    • 제19권8호
    • /
    • pp.452-456
    • /
    • 2009
  • In high-efficiency Cu(In,Ga)$Se_2$ solar cells, Na is doped into a Cu(In,Ga)$Se_2$ light-absorbing layer from sodalime-glass substrate through Mo back-contact layer, resulting in an increase of device performance. However, this supply of sodium is limited when the process temperature is too low or when a substrate does not supply Na. This limitation can be overcome by supplying Na through external doping. For Na doping, an NaF interlayer was deposited on Mo/glass substrate. A Cu(In,Ga)$Se_2$ absorber layer was deposited on the NaF interlayer by a three-stage co-evaporation process As the thickness of NaF interlayer increased, smaller grain sizes were obtained. The resistivity of the NaF-doped CIGS film was of the order of $10^3{\Omega}{\cdot}cm$ indicating that doping was not very effective. However, highest conversion efficiency of 14.2% was obtained when the NaF thickness was 25 nm, suggesting that Na doping using an NaF interlayer is one of the possible methods for external doping.