Electrochemical Etching of Silicon in Porous Silicon Layer Transfer Process for Thin Film Solar Cell Fabrication

초박형 태양전지의 Porous Si Layer Transfer 기술 적용을 위한 전기화학적 실리콘 에칭

  • Lee, Ju-Young (Dept. of Materials Science and Engineering, Hongik University) ;
  • Han, Wone-Keun (Dept. of Science, Hongik University) ;
  • Lee, Jae-Ho (Dept. of Materials Science and Engineering, Hongik University)
  • 이주영 (홍익대학교 신소재공학과) ;
  • 한원근 (홍익대학교 기초과학과) ;
  • 이재호 (홍익대학교 신소재공학과)
  • Published : 2009.12.30

Abstract

Porous silicon film is fabricated by electrochemical etching in a chemical mixture of HF and ethanol. Effects of Si type, Si resistivity, ultrasonic frequency, current density and etching time on surface morphology of PS film were studied. Electrochemical etching in ultrasonic bath promotes the uniformity of porous layer of Si. Frequency of ultrasonic was increased from 40 kHz to 130 kHz to obtain uniform pores on the Si surface. When current density was higher, the sizes of pores were larger. The new etching cell using back contact metal and current shield help to overcome nonhomogeneity and current crowding effect, and then leads to fabricate uniform pores on the Si surface. The distribution of pore size shows no notable tendency with etching time.

불산과 에탄올 혼합용액에서 전기화학적 에칭을 통하여 다공성 실리콘 층을 제작하였다. 에칭 시 인가된 초음파의 주파수, 전류밀도, 에칭시간의 변화에 따른 다공성 실리콘 층의 변화를 확인하였다. 초음파를 가해주지 않은 시편은 표면에 특별한 변화가 일어나지 않았으나, 초음파 진동자의 주파수가 40 kHz와 130 kHz인 초음파 발생조에서 실험한 시편을 관찰한 결과, 가해준 초음파의 주파수가 높을수록 다공성 실리콘 층의 기공의 크기가 더 커지고 실리콘 표면에서의 에칭이 더 균일하게 일어났다. 후면접촉 에칭조와 current shield를 이용한 결과 다공성 실리콘 층 전면에 걸쳐 균일하게 기공이 발생하였다. 다공성 실리콘 층의 기공의 크기는 전류밀도가 증가함에 따라 함께 증가하였고, 에칭 시간에는 영향을 받지 않았다.

Keywords

References

  1. C.S. Solanki, R.R. Bilyalov, J. Poortmans, J. Nijsw, R. Mertens, "Porous silicon layer transfer processes for solar cells", Solar Energy Materials & Solar Cells, 83, 101 (2004) https://doi.org/10.1016/j.solmat.2004.02.016
  2. J. Zhao, A. Wang, M.A. Green, "24.5% efficiency silicon PERT cells on MCZ substrate and 24.7% efficiency PERL cells on FZ substrates", Prog. Photovoltaics Res. Appl. 7, 417 (1999)
  3. X.G. Zhang, S.D. Collins, R.L. Smith, "Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution", J. Electrochem. Soc. 136, 1561 (1989) https://doi.org/10.1149/1.2096961
  4. R.B. Bergmann, T.J. Rinke, T.A. Wagner, J.H. Werner, "Thin film solar cells on glas based on the transfer of monocrystalline Si films", Solar Energy Materials & Solar Cells, 65, 355 (2001) https://doi.org/10.1016/S0927-0248(00)00113-6
  5. V. Lehmann, "The physics of macropore formation in low pooed n-type silicon", J. Eletrochem. Soc., 140, 2836 (1993) https://doi.org/10.1149/1.2220919
  6. Y. Liu, Z.H. Xiong, Y. Liu, S.H. Xu, X.B. Liu, X.M. Ding, X.Y. Hou, "A novel method of fabricating porous silicon material: ultrasonically enhanced anodic electrochemical etching", Solid State Communications, 127, 583 (2003) https://doi.org/10.1016/S0038-1098(03)00489-7
  7. T. Tamura, S. Adachi, "Anodic etching characteristics of n-type silicon in aqueous HF/KIO3 solution", J. of Electrochem. Soc., 154, H681 (2007) https://doi.org/10.1149/1.2742332
  8. O. Tobail "Porous Silicon for Thin Solar Cell Fabrication", in Ph. D. thesis, Univ. Stuttgart, Stuttgart (2008)
  9. R. Auer, R. Horbelt, R. Brendel, "Simplified transfer process for high-current thin film crystalline Si solar moducles", 3rd World Conference on Photovoltaic Energy Conversion, 1479 (2003)