• 제목/요약/키워드: Back sheet

검색결과 232건 처리시간 0.028초

마그네슘 합금 판재의 정적-내연적 성형해석에 관한 연구 (A Study on Static-Implicit Forming Analysis of the Magnesium Alloy Sheet)

  • 손영기;정동원
    • 한국기계가공학회지
    • /
    • 제7권4호
    • /
    • pp.44-49
    • /
    • 2008
  • The characteristic of magnesium alloy is the most light in utility metal, the effect of electromagnetic wave interception, excellent specific strength and absorptiveness of vibration. Although magnesium alloy with above characteristic is a subject matter which is suitable in world-wide tendency of electrical component frame, sheet magnesium alloy is difficult to process. Therefore, forming analysis of sheet magnesium alloy and applying warm-working to process are indispensable. Among Finite element method, the static implicit finite element method is applied effectively to analyze sheet magnesium alloy stamping process, which include the forming stage. In this study, it was focused on the crack, wrinkling and spring back on sheet magnesium alloy stamping by the static implicit analysis. According to this study, the result of simulation will give engineers good information to access the forming technique on sheet magnesium alloy. And its application is being increased especially in the production of electrical component frame for the cost reduction, saving of defective ratio, and improvement of Productivity.

  • PDF

Plume의 주기성이 연층형성에 미치는 영향 (A Characteristics of Smoke Layer Formation Affected Periodicity of Fire Plumes)

  • 한용식;김명배;오광철;신현동
    • 한국화재소방학회논문지
    • /
    • 제16권2호
    • /
    • pp.38-42
    • /
    • 2002
  • ON-OFF 제트를 사용하여 plume의 주기성이 천장아래에 형성되는 연층에 미치는 정성적인 영향을 파악하였다. 사용된 연기는 가열에 의해 증발된 kerosene 입자를 섞은 질소가스이다. Laser sheet에 의해 산란된 유동장의 순간 상들은 디지털 비디오 카메라에 의해 녹화되었다. ON-OFF 제트와 연속제트의 연층형성 과정을 비교하므로서 화원근처에 형성되는 연층은 plume과 천장의 주기적인 충돌에 의해 지배됨을 확인하였다. 또한 plume의 주기적인 충돌은 연층을 두껍게하며, back-flow를 일으킴을 확인하였다.

980MPa 초고장력 강판의 형상 동결성 향상을 통한 자동차 시트레일 부품 개발 (Development of Automotive Seat Rail Parts for Improving Shape Fixability of Ultra High Strength Steel of 980MPa)

  • 박동환;권혁홍
    • 한국기계가공학회지
    • /
    • 제15권5호
    • /
    • pp.137-144
    • /
    • 2016
  • This paper aims to ensure describe the a spring-back prevention technique for improving shape fixability by using an ultra-high strength steel sheet with 980 MPa to develop a lightweight seat rail parts. Ultra-high strength steel gives a potential for considerable weight reduction and a cost-effective way to produce energy efficient vehicles. The influence of a spring-back of seat rail parts on the shape fixability in forming processes was investigated to be solved by an adjustment of the appropriate tool design and process parameters. The computed results for improving shape fixability were in good agreement with the experimental results.

1.2GPa급 초고강도강판의 단면 형태에 따른 스프링백에 관한 해석적 평가 및 연구 (Analytical evaluation and study on the springback according to the cross sectional form of 1.2GPa ultra high strength steel plate)

  • 이동환;한성렬;이춘규
    • Design & Manufacturing
    • /
    • 제13권4호
    • /
    • pp.17-22
    • /
    • 2019
  • Currently, studies on weight reduction and fuel efficiency increase are the most important topics in the automotive industry and many studies are under way. Among them, weight reduction is the best way to raise fuel efficiency and solve environmental pollution and resource depletion. Materials such as aluminum, magnesium and carbon curing materials can be found in lightweight materials. Among these, research on improvement of bonding technology and manufacturing method of materials and improvement of material properties through study of ultrahigh strength steel sheet is expected to be the biggest part of material weight reduction. As the strength of the ultra hight strength steel sheet increases during forming, it is difficult to obtain the dimensional accuracy as the elastic restoring force increases compared to the hardness or high strength steel sheet. It is known that the spring back phenomenon is affected by various factors depending on the raw material and processing process. We have conducted analytical evaluations and studies to analyze the springback that occurs according to the cross-sectional shape of the ultra high tensile steel sheet.

반응표면법-역전파신경망을 이용한 AA5052 판재 점진성형 공정변수 모델링 및 유전 알고리즘을 이용한 다목적 최적화 (Modeling of AA5052 Sheet Incremental Sheet Forming Process Using RSM-BPNN and Multi-optimization Using Genetic Algorithms)

  • 오세현;샤오샤오;김영석
    • 소성∙가공
    • /
    • 제30권3호
    • /
    • pp.125-133
    • /
    • 2021
  • In this study, response surface method (RSM), back propagation neural network (BPNN), and genetic algorithm (GA) were used for modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goal of optimization is to determine the maximum forming angle and minimum surface roughness, while varying the production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model and BPNN model to model the variations in the forming angle and surface roughness based on variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process the GA. The results showed that RSM and BPNN can be effectively used to control the forming angle and surface roughness. The optimized Pareto front produced by the GA can be utilized as a rational design guide for practical applications of AA5052 in the ISF process

무금형 성형장치를 이용한 폐루프 판재성형 (Closed-loop Sheet Metal Forming Using Dieless Forming Apparatus)

  • 양승훈;박종우;홍예선;양현석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.62-65
    • /
    • 2002
  • A dieless forming system which consists of hydraulic punch elements and elastomer/fluid pads, was developed for sheet metal forming. 2-D curved surface forming was carried out using open-loop, closed-loop, and repeated forming method. Closed-loop exhibited higher decision than open-loop forming. Repeated forming also showed reduced spring back and possibility of high precision.

  • PDF

복합시트의 구조가 흡·차음성에 미치는 영향 (Effect of Structure on the Sound Absorption and Sound Transmission Loss of Composite Sheet)

  • 이병찬;김성룡
    • Composites Research
    • /
    • 제25권5호
    • /
    • pp.154-158
    • /
    • 2012
  • 복합시트의 구조를 변화시켜 흡 차음성에 미치는 영향을 연구하였다. 폴리프로필렌 보드의 표면과 배면에 폴리에틸렌테레프탈레이트 부직포를 핫 프레스로 융착하여 복합시트를 제조하였다. 면밀도가 $0.64kg/m^2$인 부직포를 사용하여 제조한 복합시트의 흡음률은 0.1-0.2의 값을 나타내어 폴리프로필렌 보드의 흡음률에 비해 약 100~400%의 증가를 나타내었다. 폴리프로필렌 보드의 면밀도를 증가시키거나 복합시트 위에 반구형의 홈을 포함하는 경우에 복합시트의 투과손실이 증가하였다. 평판 복합시트와 사인 파형을 가지는 복합시트의 구조를 변화시켜 만든 2가지 복합시트 구조에 따른 흡음률과 차음도의 변화를 조사하였다.

하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석 (Spring-Back Prediction for Sheet Metal Forming Process Using Hybrid Membrane/shell Method)

  • 윤정환;정관수;양동열
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.49-59
    • /
    • 2003
  • To reduce the cost of finite element analyses for sheet forming, a 3D hybrid membrane/shell method has been developed to study the springback of anisotropic sheet metals. In the hybrid method, the bending strains and stresses were analytically calculated as post-processing, using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback, a shell finite element model was used to unload the final shape of the sheet obtained from the membrane code and the stresses and strains that were calculated analytically. For verification, the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. The springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulate both loading and unloading and the experimentally measured data. The CPU time saving with the hybrid method, over the full shell model, was 75% for the punch stretching problem.

판재 특성에 따른 롤 성형 해석시 스프링백 연구 (A Study on the Springback of Sheet Characteristics for Roll forming Analsys)

  • 정진호;이영선;권용남;이정환;손성만;이문용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.300-301
    • /
    • 2007
  • In this study, it is investigated that sheet characteristics of high strength steel sheets and effect of springback. High strength steel sheets has got attention in automobile industry of high strength and high formability. Springback is a common phenomenon in sheet metal forming, caused by the elastic recovery of the internal stresses after removal of the tooling. However, the information in deformation behavior of high strength steel sheets, including bending and sheet characteristics and springback, is not enough until now. In this research, the V-bending experiment and analysis have been done to obtain the information of springback of high strength steel sheets. Tensile test for high strength steel sheets was done to got tensile properties of elastic modulus and flow stress of the material. It analyzed springback according to the sheet characteristics with using roll-forming model. FE-Simulation used DEFORM-$3D^{TM}$.

  • PDF

하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석 (Spring-back prediction for sheet metal forming process using hybrid membrane/shell method)

  • F. Pourboghrat
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.62-65
    • /
    • 1999
  • To reduce the cost of finite element analyses for sheet forming a 3D hybrid membrance/sheel method has been developed to study the springback of anisotropic sheet metals. in the hybrid method the bending strains and stresses were analytically calculated as post-processing using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback a shell finite element model was used to unload the final shape of the sheet obtained from the membran code and the stresses and strains that were calculated analytically. For verification the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. the springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulateboth loading an unloading and the experimentally measured data. The CPU time saving with the hybrid method over the full shell model was 75% for the punch stretching problem.

  • PDF