• Title/Summary/Keyword: Back propagation neural network

Search Result 1,072, Processing Time 0.03 seconds

Recognition of a New Car Plate using Color Information and Error Back-propagation Neural Network Algorithms (컬러 정보와 오류역전파 신경망 알고리즘을 이용한 신차량 번호판 인식)

  • Lee, Jong-Hee;Kim, Jin-Whan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.471-476
    • /
    • 2010
  • In this paper, we propose an effective method that recognizes the vehicle license plate using RGB color information and back-propagation neural network algorithm. First, the image of the vehicle license plate is adjusted by the Mean of Blue values in the vehicle plate and two candidate areas of Red and Green region are classified by calculating the differences of pixel values and the final Green area is searched by back-propagation algorithm. Second, our method detects the area of the vehicle plate using the frequence of the horizontal and the vertical histogram. Finally, each of codes are detected by an edge detection algorithm and are recognized by error back-propagation algorithm. In order to evaluate the performance of our proposed extraction and recognition method, we have run experiments on a new car plates. Experimental results showed that the proposed license plate extraction is better than that of existing HSI information model and the overall recognition was effective.

Development of a Supporting System for Nutrient Solution Management in Hydroponics - II. Estimation of Electrical Conductivity(EC) using Neural Networks (양액재배를 위한 배양액관리 지원시스템의 개발 - II. 신경회로망에 의한 전기전도도(EC)의 추정)

  • 손정익;김문기;남상운
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.162-168
    • /
    • 1992
  • As the automation of nutrient solution management proceeds in the field of hydroponics, effective supporting systems to manage the nutrient solution by computer become needed. This study was attempt to predict the EC of nutrient solution using the neural networks. The multilayer perceptron consisting of 3 layers with the back propagation learning algorithm was selected for EC prediction, of which nine variables in the input layer were the concentrations of each ion and one variable in the output layer the EC of nutrient solution. The meq unit in ion concentration was selected fir input variable in the input layer. After the 10,000 learning sweeps with 108 sample data, the comparison of predicted and measured ECs for 72 test data showed good agreements with the correlation coefficient of 0.998. In addition, the predicted ECs by neural network showed relatively equal or closer to the measured ones than those by current complicated models.

  • PDF

On the Configuration of initial weight value for the Adaptive back propagation neural network (적응 역 전파 신경회로망의 초기 연철강도 설정에 관한 연구)

  • 홍봉화
    • The Journal of Information Technology
    • /
    • v.4 no.1
    • /
    • pp.71-79
    • /
    • 2001
  • This paper presents an adaptive back propagation algorithm that update the learning parameter by the generated error, adaptively and configuration of the range for the initial connecting weight according to the different maximum target value from minimum target value. This algorithm is expected to escaping from the local minimum and make the best environment for the convergence. On the simulation tested this algorithm on three learning pattern. The first was 3-parity problem learning, the second was $7{\times}5$ dot alphabetic font learning and the third was handwritten primitive strokes learning. In three examples, the probability of becoming trapped in local minimum was reduce. Furthermore, in the alphabetic font and handwritten primitive strokes learning, the neural network enhanced to loaming efficient about 27%~57.2% for the standard back propagation(SBP).

  • PDF

Flexural and axial vibration analysis of beams with different support conditions using artificial neural networks

  • Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.303-314
    • /
    • 2004
  • An artificial neural network (ANN) application is presented for flexural and axial vibration analysis of elastic beams with various support conditions. The first three natural frequencies of beams are obtained using multi layer neural network based back-propagation error learning algorithm. The natural frequencies of beams are calculated for six different boundary conditions via direct solution of governing differential equations of beams and Rayleigh's approximate method. The training of the network has been made using these data only flexural vibration case. The trained neural network, however, had been tested for cantilever beam (C-F), and both end free (F-F) in case the axial vibration, and clamped-clamped (C-C), and Guided-Pinned (G-P) support condition in case the flexural vibrations which were not included in the training set. The results found by using artificial neural network are sufficiently close to the theoretical results. It has been demonstrated that the artificial neural network approach applied in this study is highly successful for the purposes of free vibration analysis of elastic beams.

Experimental Studies of neural Network Control Technique for Nonlinear Systems (신경회로망을 이용한 비선형 시스템 제어의 실험적 연구)

  • Jeong, Seul;Yim, Sun-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.918-926
    • /
    • 2001
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented. Simulation studies for three link rotary robot are performed. Neural network controller is implemented on DSP board in PC to make real time computing possible. On-line training algorithms for neural network control are proposed. As a test-bed, a large x-y table was build and interface with PC has been implemented. Experiments such as inverted pendulum control and large x-y table position control are performed. The results for different PD controller gains with neural network show excellent position tracking for circular trajectory compared with those for PD controller only. Neural control scheme also works better for controlling inverted pendulum on x-y table.

  • PDF

Determination of Initial Billet using The Artificial Neural Networks and The Finite Element Method for The Forged Products (신경망과 유한요소법을 이용한 단조품의 초기 소재 결정)

  • 김동진;고대철;김병민;강범수;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.133-140
    • /
    • 1994
  • In this paper, we have proposed a new method to determine the initial billet for the forged products using a function approximation in neural networks. the architecture of neural network is a three-layer neural network and the back propagation algorithm is employed to train the network. By utilizing the ability of function approximation of neural network, an optimal billet is determined by applying nonlinear mathematical relationship between shape ratio in the initial billet and the final products. A volume of incomplete filling in the die is measured by the rigid-plastic finite element method. The neural network is trained with the initial billet shape ratio and that of the un-filled volume. After learning, the system is able to predict the filling region which are exactly the same or slightly different to results of finite element method. It is found that the prediction of the filling shape ratio region can be made successfully and the finite element method results are represented better by the neural network.

  • PDF

RECONSTRUCTION OF LIMITED-ANGLE CT IMAGES BY AN ADAPTIVE RESILIENT BACK-PROPAGATION ALGORITHM

  • Kazunori Matsuo;Zensho Nakao;Chen, Yen-Wei;Fath El Alem F. Ah
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.839-842
    • /
    • 2000
  • A new and modified neural network model Is proposed for CT image reconstruction from four projection directions only. The model uses the Resilient Back-Propagation (Rprop) algorithm, which is derived from the original Back-Propagation, for adaptation of its weights. In addition to the error in projection directions of the image being reconstructed, the proposed network makes use of errors in pixels between an image which passed the median filter and the reconstructed one. Improved reconstruction was obtained, and the proposed method was found to be very effective in CT image reconstruction when the given number of projection directions is very limited.

  • PDF

Correlation of Liquid-Liquid Equilibrium of Four Binary Hydrocarbon-Water Systems, Using an Improved Artificial Neural Network Model

  • Lv, Hui-Chao;Shen, Yan-Hong
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.370-376
    • /
    • 2013
  • A back propagation artificial neural network model with one hidden layer is established to correlate the liquid-liquid equilibrium data of hydrocarbon-water systems. The model has four inputs and two outputs. The network is systematically trained with 48 data points in the range of 283.15 to 405.37K. Statistical analyses show that the optimised neural network model can yield excellent agreement with experimental data(the average absolute deviations equal to 0.037% and 0.0012% for the correlated mole fractions of hydrocarbon in two coexisting liquid phases respectively). The comparison in terms of average absolute deviation between the correlated mole fractions for each binary system and literature results indicates that the artificial neural network model gives far better results. This study also shows that artificial neural network model could be developed for the phase equilibria for a family of hydrocarbon-water binaries.

Visual Bean Inspection Using a Neural Network

  • Kim, Taeho;Yongtae Do
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.644-647
    • /
    • 2003
  • This paper describes a neural network based machine vision system designed for inspecting yellow beans in real time. The system consists of a camera. lights, a belt conveyor, air ejectors, and a computer. Beans are conveyed in four lines on a belt and their images are taken by a monochrome line scan camera when they fall down from the belt. Beans are separated easily from their background on images by back-lighting. After analyzing the image, a decision is made by a multilayer artificial neural network (ANN) trained by the error back-propagation (EBP) algorithm. We use the global mean, variance and local change of gray levels of a bean for the input nodes of the network. In an our experiment, the system designed could process about 520kg/hour.

  • PDF