• Title/Summary/Keyword: Back Trajectory

Search Result 143, Processing Time 0.028 seconds

The Real-time Neural Network Control of Mobile Robot Based-on Genetic Algorithm (유전 알고리즘을 이용한 이동로봇의 실시간 신경회로망 제어)

  • 정경규;정동연;이우송;김경년;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.146-151
    • /
    • 2001
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF

Design of an Intelligent Controller of Mobile Robot Using Genetic Algorithm (제네틱 알고리즘을 이용한 이동로봇의 지능제어기 설계)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.207-212
    • /
    • 2003
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF

Robot PTP Trajectory Planning Using a Hierarchical Neural Network Structure (계층 구조의 신경회로망에 의한 로보트 PTP 궤적 계획)

  • 경계현;고명삼;이범희
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.10
    • /
    • pp.1121-1232
    • /
    • 1990
  • A hierarchical neural network structure is described for robot PTP trajectory planning. In the first level, the multi-layered Perceptron neural network is used for the inverse kinematics with the back-propagation learning procedure. In the second level, a saccade generation model based joint trajectory planning model in proposed and analyzed with several features. Various simulations are performed to investigate the characteristics of the proposed neural networks.

  • PDF

Analytic Solution for Stable Bipedal Walking Trajectory Generation Using Fourier Series (푸리에 급수를 이용한 이족보행로봇의 보행 궤적 해석해 생성)

  • Park, Ill-Woo;Back, Ju-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1216-1222
    • /
    • 2009
  • This article describes a simple method for generating the walking trajectory for the biped humanoid robot. The method used a simple inverted model instead of complex multi-mass model and a reasonable explanation for the model simplification is included. The problem of gait trajectory generation is to find the solution from the desired ZMP trajectory to CoG trajectory. This article presents the analytic solution for the bipedal gait generation on the bases of ZMP trajectory. The presented ZMP trajectory has Fourier series form, which has finite or infinite summation of sine and cosine functions, and ZMP trajectory can be designed by calculating the coefficients. From the designed ZMP trajectory, this article focuses on how to find the CoG trajectory with analytical way from the simplified inverted pendulum model. Time segmentation based approach is adopted for generating the trajectories. The coefficients of the function should be designed to be continuous between the segments, and the solution is found by calculating the coefficients with this connectivity conditions. This article also has the proof and the condition of solution existence.

Effect of Air-mass Back Trajectory on the Chemical Composition of Cloud/Fog Water at Daegwallyeong (기류의 유입경로가 대관령 지역 안개의 화학조성에 미치는 영향)

  • Kim Man-Goo;Lee Bo-Kyoung;Kim Hyun-Jin;Hong Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.3
    • /
    • pp.343-355
    • /
    • 2005
  • Cloud/fog water was collected at Daegwallyeong, a typical clean environmental area, by using an active fog sampler during the foggy period in 2002, The pH ranged from 3,7 to 6,5 with a mean of 5,0, but the pH calculated from average concentrations of $H^+$ was 4.4. $SO_4^{2-},\;NO_3^-\;and\;NH_4^+$ were predominant ions with average concentrations of 473,3, 463,3 and $576,0\;{\mu}eq/L$, respectively, This showed that cloud/fog water was slightly acidified, but the concentrations of major pollutants were as high as those for polluted area, suggesting effect from long range transported pollutants, Samples were categorized into four groups (E, W, S, N) by applying 48-h back trajectory analysis using the Hybrid Single-Particle Largrangian Integrated Trajectory (HYSPLIT) model. Concentrations of seasalt $(Na^+\;and\;Cl^-)$ were the highest for group E, indicating large input of seasalts by air masses transported from the East Sea. The concentrations of $SO_4^{2-}$ were slightly higher in group W but the difference was not significant. However, the concentrations of $NO_3^-$ were significantly higher in group W than those in other three groups, The median values of cloud/fog water pH for group N and W were below 4,5, which is significantly lower than median values in group E and group S, This suggests that the acidifying pollutants were transported from the Asia continents and Seoul metropolitan area cause acidification of the cloud/fog water in Daegwallyeong.

A Study of Golf Swing Errors of Amateur Golfer (아마추어골퍼들의 스윙 오류에 관한 연구)

  • Lim, Jung;Jeon, Chul-Woo;Chung, Chae-Wook
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.165-174
    • /
    • 2006
  • The purpose of this study was to review the relevant literature about coaching and thereupon, survey the coaching methods used for golfer lesson to reinterpret them and thereby, describe in view of kinetics the swing errors committed frequently by amateur golfers and suggest more scientific golfer coaching methods. For this purpose, kinetic elements were divided into precision and power ones and therewith, the variables affecting such elements were identified. On the other hand, swings were divided into address, take-back, back-swing, back-swing top, down-swing, impact and follow-through to determine 20 variables for each form and thereby, define their errors to determine the relations between their frequency and errors. For this study, a total of 60 amateur golfer were sampled, and their swing forms were photographed with two high-speed digital cameras, and the resultant images were analyzed to determine the errors of each form kinetically, which would be analyzed again with the program V1-5000. The results of this study can be summarized as follows; The kinetic elements could be identified as precision, power and precise power. Thus, setup and trajectory were classified into precision elements, while differences of inter-joint angles, cocking and delayed hitting. Lastly, timing and axial movement were classified into precise power elements. Three errors were identified in association with setup. The errors related with trajectory elements accounted for most (7) of the 20 errors. Three errors were determined for inter-joint angle differences, and one error was associated with cocking and delayed hitting. Lastly, one error was classified into timing error, while five errors were associated with axial movement. Finally, as a result of arranging the errors into a cross table, it was found that the errors were associated with each other between take-back and back-swing, take-back and follow-through, back-swing and back-swing top, and between back-swing and down-swing. Namely, an error would lead to other error repeatedly. So, it is more effective to identify all the errors for every form and correct them comprehensively rather than single out the errors and correct them one by one.

Trajectory Tracking Control of Pneumatic Artificial Muscle Driving Apparatus based on the Linearized Model (공압 인공근육 구동장치의 선형화 모델 기반 궤적추적제어)

  • Jang, J.S.;Yoo, W.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.97-103
    • /
    • 2006
  • In this study, a position trajectory tracking control algorithm is proposed for a pneumatic artificial muscle driving apparatus composed of a actuator which imitates the muscle of human, a position sensor and a control valve. The controller applied to the driving apparatus is composed of a state feedback controller and disturbance observer. The feedback controller which feeds back position, velocity and acceleration is derived from the linear model of pneumatic artificial muscle driving apparatus. The disturbance observer is designed to improve trajectory tracking performance and to reduce the effect of model discrepancy. The effectiveness of the designed controller is proved by experiments and the experimental results show that the pneumatic artificial muscle driving apparatus with the proposed control algorithm tracks given position reference inputs accurately.

  • PDF

Active Trajectory Tracking Control of AMR using Robust PID Tunning

  • Tae-Seok Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_1
    • /
    • pp.753-758
    • /
    • 2024
  • Trajectory tracking of the AMR robot is one research for the AMR robot navigation. For the control system of the Autonomous mobile robot(AMR) being in non-honolomic system and the complex relations among the control parameters, it is d ifficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive tracking controller based on the PID for AMR robot trajectory tracking. The method uses a non-linear model of AMR robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven non-holonomic AMR robot is carried out in the velocity and orientation tracking control of the non-holonomic AMR. The simulation results of wheel type AMR robot platform show that the proposed controller is more robust than the conventional back-stepping controller to show the effectiveness of the proposed algorithm.

Integration of the Engine Control into the Optimal Trajectory Determination for a Spaceplane

  • Matsunaga, Kensuke;Tanatsugu, Nobuhiro;Sato, Tetsuya;Kobayashi, Hiroaki;Okabe, Yoriji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.742-748
    • /
    • 2004
  • In this paper are presented TSTO system analysis including some controlled variables on the engine operation such as a fuel flow rate and a pressure ratio of compressor, as well as variables on the trajectory. TSTO studied here is accelerated up to Mach 6 by a fly-back booster powered by air breathing engines. Three different types of engine cycle were treated for propulsion system of the booster, such as a turbo ramjet, a precooled turbojet and an EXpander cycle Air Turbo Ramjet (ATREX). The history of the controlled variables on the engine operation was optimized by Sequential Quadratic Programming (SQP) to accomplish the minimum fuel consumption. The trajectory was also optimized simultaneously. The results showed that the turbo ramjet gave the best fuel consumption. The optimal trajectory was almost the same except in the transonic range and just before reaching to Mach 6. The history of the pressure ratio of compressor considerably depended on the engine type. It is concluded that simultaneous optimization for engine control and trajectory is effective especially for a high-speed airplane propelled by turbojets like the TSTO booster.

  • PDF