• Title/Summary/Keyword: Bacillus sphaericus

Search Result 37, Processing Time 0.252 seconds

Identification and Cultural Optimization of the Fenitrothion-degrading Microorganism, Bacillus sphaericus NFo1 (Fenitrothion 분해미생물 Bacillus sphaericus NFo1의 동정 및 분해 최적조건)

  • Choi, Hyuek;Lee, Young-Deuk;Kang, Sun-Chul
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 2009
  • A study was carried out to find out the methodology of biological treatment for wastes and wastewater caused by an organophosporus insecticide, fenitrothion, using fenitrothion-degrading microorganism. A fenitrothion-degrading microorganism was isolated by using a selective nutrient broth (NB) medium including fenitrothion, and identified to Bacillus sphaericus NFol based on its morphological and biochemical characteristics. Further, investigation was processed to determine the optimal culture conditions degrading fenitrothion in NB medium by using the NFo1 strain. As results, the cultural conditions determined for temperature, initial pH and inoculum for the optimum growth of the strain and degradation of fenitrothion, which has a exact co-relationship between both of them, were $35^{\circ}C$, 7.5 and 1.5 at $OD_{660}$ value, respectively. In this conditions, fenitrothion could be degraded within 5 days over 90% at the high concentrations of fenitrothion, upto 200 mg/L.

Electrophoretic Analysis of Total Proteins in Bacillus sphaericus ts-Dl290 (Bacillus sphaericus ts-D1200 단백질의 전기영동적 분석)

  • 서정희;이형환;김영희
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.5
    • /
    • pp.541-546
    • /
    • 1990
  • Bacillus sphaericus ts-Dl290 was characterized by SDS-PAGE produced by the mutant at $30^{\circ}C$ and $42^{\circ}C$. The total amount of proteins produced by the mutant at $42^{\circ}C$ decreased to one-fifth of those at $30^{\circ}C$; however, when the culture was shifted down from $42^{\circ}C$ after 4 to $30^{\circ}C$, the total amount of protein decreased to one-third and the 221 kd protein did not appear, but the 155 kd appeared remarkably. When the mutant and the wild type strain were cultured in the media containing 80$\mu g$ per ml of chloramphenicol at $42^{\circ}C$, the wild type strain synthesized half amounts of the total proteins than those at $30^{\circ}C$, and the mutant produced one-tenth of the total protein amounts. When the both strains were cultured in the media containing chloramphenicol, the 155 kd protein was produced was produced in lesser amounts than those without chloramphenicol. The 150 kd protein showed lethal activity to Culex pipiens 3rd instar larvae.

  • PDF

Removal of pentachlorophenol by pentachlorophenol resistant strains isolated from activated sludge (활성오니에서 분리한 pentachlorophenol 내성균주의 pentachlorophenol 제거에 관한 연구)

  • Park, Yun-Hee;Cho, Sung-Eun;Lee, Woo-Sang;Jo, Do-Hyun
    • Applied Biological Chemistry
    • /
    • v.35 no.4
    • /
    • pp.242-247
    • /
    • 1992
  • Twenty strains of pentachlorophnol (PCP) resistant bacteria were isolated from activated sludge of the sewage treatment plant of Jung Lang Chun, Seoul. The predominant strains were Bacillus spp. including B. sphaericus and E. schlegelii. The other strains were identified as Corynebacterium spp., Staphylococcus aureus, Arthrobacter spp. and Aeromonas spp. The resistant strains could be grouped into two categories; PCP-degrading and PCP-adsorbing/absorbing ones. PCP-degrading strains degraded $75{\sim}90%$ of PCP in the medium containing 100 ppm PCP during the first 24 hours of growth. At the initial period the PCP-adsorbing/absorbing strains removed PCP from the medium but started to release PCP after 24 or 72 hours of growth. PCP degradation products from the culture broth of PCP-degrading strains were identified by comparing their $R_f$ values with those of the reference compounds. 2-chlorophenol and 2.4-dichlorophenol were presumed to be the intermediate products of PCP degradation.

  • PDF

Electron Microscopic Evidence of Paraporal Crystal Inclusion Biogenesis in Bacillus sphaericus Strain 1593

  • Lee, Young-Ju;Lee, Hyung-Hoan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1106-1110
    • /
    • 2001
  • The parasporal biogenesis of crystal inclusion during the sporulation of Bacillus sphaericus strain 1593 was observed using transmission electron microscopy. The crystal biogenesis and sporulation process involved a sequence of events talking about 10 h. The sporulation Precesses were found to be similar to previous findings. The crystal biogenesis of B. sphaericus was initiated at the start of engulfment and nearly completed by the time of exosporium formation. The crystal formation was clearly associated with the outer forespore membrane from stages III through VI, and the crystals grew from polypeptide-like chains originated from the outer forespore membrane. These observations are different from previous findings, which report no association with the forespore membrane. The crystals were located adjacent to the outer membrane of the spore until the release stage. The axes size of the bipyramidal crystal was approximately $0.25{\mu}m{\times}42{\mu}m$. During crystal biogenesis, the crystal development could be classified into four stages; initiation stage Cl (sporulation stage . III), growth stage C2 (sporulation III to V), envelopment and maturation C3 (sporulation V to V), and finally release stage C4 (sporulation Vll).

  • PDF

Characterization of Water Quality and Bacteria of Leachate from Animal Carcass Disposal on the Disposal Lapse Time (매몰 시간의 경과에 따른 구제역 가축 매몰지 침출수 특성에 관한 연구)

  • Choi, Nag-Choul;Choi, Eun-Ju;Kim, Bong-Ju;Park, Jeong-Ann;Kim, Song-Bae;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.345-350
    • /
    • 2013
  • In this study, the physicochemical properties of leachate and the bacteria existence in leachate using molecular biology methods for 4 animal carcass disposals on the disposal lapse time was analyzed. The result of leachate physicochemical analysis in the middle stage (been buried 20 months) showed higher EC, DO, $HCO_3{^-}$, TOC, T-N and $SO_4{^{2-}}$ concentration compared to the first stage data (been buried 5 months). For identification of leachate using 16S rRNA method, Lysinibacillus sphaericus, Bacillus pumilus, Pseudoclavibacter helvolus, Pseudochrobactrum saccharolyticum and Corynebacterium callunae in the first stage, Bacillus cereus, Lysinibacillus sphaericus, Bacillus circulans and Corynebacterium glutamicum in the middle stage was observed, while there were detections of pathogenicity bacteria such as B. cereus and L. sphaericus. This study improves our knowledge of the fate and transport in geologic media, treatment, risk analysis on the leachate from animal carcass disposal sites.

Essential role of tryptophan residues in toxicity of binary toxin from Bacillus sphaericus

  • Kunthic, Thittaya;Promdonkoy, Boonhiang;Srikhirin, Toemsak;Boonserm, Panadda
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.674-679
    • /
    • 2011
  • Bacillus sphaericus produces mosquito-larvicidal binary toxin composed of BinA and BinB. While BinB is expected to bind to a specific receptor on the cell membrane, BinA interacts to BinB or BinB receptor complex and translocates into the cytosol to exert its activity via unknown mechanism. To investigate functional roles of aromatic cluster in BinA, amino acids at positions Y213, Y214, Y215, W222 and W226 were substituted by leucine. All mutant proteins were highly produced and their secondary structures were not affected by these substitutions. All mutants are able to insert into lipid monolayers as observed by Langmuir-Blodgett trough and could permeabilize the liposomes in a similar manner as the wild type. However, mosquito-larvicidal activity was abolished for W222L and W226L mutants suggesting that tryptophan residues at both positions play an important role in the toxicity of BinA, possibly involved in the cytopathological process after toxin entry into the cells.

Role of cysteine at positions 67, 161 and 241 of a Bacillus sphaericus binary toxin BinB

  • Boonyos, Patcharaporn;Soonsanga, Sumarin;Boonserm, Panadda;Promdonkoy, Boonhiang
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • Binary toxin consisting of BinA and BinB from Bacillus sphaericus is toxic to mosquito larvae. BinB is responsible for specific binding to the larval gut cell membrane while BinA is crucial for toxicity. To investigate functional role of cysteine in BinB, three cysteine residues at positions 67, 161, and 241 were replaced by alanine or serine. Mutations at these positions did not affect protein production and overall structure of BinB. These cysteine residues are not involved in disulfide bond formation between BinB molecules. Mosquito-larvicidal assays revealed that C67 and C161 are essential for toxicity, whereas C241 is not. Mutations at C67 and C161 resulted in weaker BinA-BinB interaction. The loss of toxicity may be due to the reduction of interactions between BinA and BinB or BinB and its receptor. C67 and C161 could also play a part during conformational changes or internalization of the binary toxin into the target cell.

Metal Biosorption by Surface-Layer Proteins from Bacillus Species

  • Allievi, Mariana Claudia;Florencia, Sabbione;Mariano, Prado-Acosta;Mercedes, Palomino Maria;Ruzal, Sandra M.;Carmen, Sanchez-Rivas
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.147-153
    • /
    • 2011
  • Bacillus species have been involved in metal association as biosorbents, but there is not a clear understanding of this chelating property. In order to evaluate this metal chelating capacity, cultures and spores from Grampositive bacteria of species either able or unable to produce surface layer proteins (S-layers) were analyzed for their capacity of copper biosorption. Only those endowed of S-layers, like Bacillus sphaericus and B. thuringiensis, showed a significant biosorption capacity. This capacity (nearly 50%) was retained after heating of cultures, thus supporting that structural elements of the envelopes are responsible for such activity. Purified S-layers from two Bacillus sphaericus strains had the ability to biosorb copper. Copper biosorption parameters were determined for strain B. sphaericus 2362, and after analyses by means of the Langmuir model, the affinity and capacity were shown to be comparable to other bacterial biosorbents. A competitive effect of $Ca^{2+}$ and $Zn^{2+}$, but not of $Cd^{2+}$, was also observed, thus indicating that other cations may be biosorbed by this protein. Spores that have been shown to be proficient for copper biosorption were further analyzed for the presence of S-layer content. The retention of S-layers by these spores was clearly observed, and after extensive treatment to eliminate the S-layers, the biosorption capacity of these spores was significantly reduced. For the first time, a direct correlation between S-layer protein content and metal biosorption capacity is shown. This capacity is linked to the retention of S-layer proteins attached to Bacillus spores and cells.

Purification and Characterization of an Intracellular Inulinase from Bacillus sphaericus 188-1

  • Kim, Jae-Ho;Kwak, Yoon-Jin;Lee, Jong-Tae;Park, Shin-Yang;Lee, Jong-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.4
    • /
    • pp.421-426
    • /
    • 2002
  • In order to obtain basal data for industrial application of inulinase from Bacillus sphaeicus 188-1, its intracellular inulinase was purified by ammonium sulfate fractionation and column chromatography on DEAE-Sephadex A-50 and Sephadex G-100. The enzyme was homogeneous as judged by SDS-polyacrylamide gel electrophoresis, with an apparent molecular weight of 29 kDa. Inulinase activity was optimal at pH 6.5 and 4$0^{\circ}C$. The enzyme activity was significantly inhibited by Cu$^{2+}$, Cd$^{2+}$ and Hg$^{2+}$. The inulinase exhibited an apparent Km value of 0.014% for inulin.

Biosyntheses of Nucleic Acids and Proteins of Bacillus sphaericus ts-Dl290 Lethal Mutant (Bacillus sphaericus ts-D1290 치사돌연변이체의 핵산과 단백질합성)

  • 서정희;이형환;이희무
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.5
    • /
    • pp.535-540
    • /
    • 1990
  • Bacitlus sphaericus ts-Dl290 was characterized comparatively with the wild type strain 1593 by themeasurements of the biosynthesis of total DNA, RNA and protein on the temperature-shift culturesat permissive temperature of $30^{\circ}C$ and at nonpermissive temperature of $42^{\circ}C$. The growth patterns of the wild type strain and ts-Dl290 were similar at $30^{\circ}C$, but at 4Z C the mutant almost did not grow (temperature-sensitivity). When the growth temperatures of both stains were shifted-up from $30^{\circ}C$ to $42^{\circ}C$ after a 4 hour culture, their growths were normal, but when shifted-down from $42^{\circ}C$ to $30^{\circ}C$ after a 4 h culture, the mutant did not grow. When shifted up from $30^{\circ}C$ to $42^{\circ}C$ after a 4 hculture, the DNA syntheses of the two strains were at a normal rate for 1 h, but after 1 h the biosynthesesdecreased. The rate of DNA synthesis of the wild type strain at the nonpermissive temperature was about 93%, and that of the mutant was about 50% of the ratio of the wild type strain, and the RNA synthesis of the wild type strain was maintained for 3 h, and that of the mutant for 2 h. Thereafter the RNA synthesis decreased, and the synthesis of proteins in the both strains were similarlykept high for 8 h. The reversibility of the DNA synthesis of the mutant at $42^{\circ}C$ was lessened whenthe culture times were increased.re times were increased.

  • PDF