• Title/Summary/Keyword: BaMoO4

Search Result 13, Processing Time 0.056 seconds

Structural and Photoluminescence Properties of BaMoO4:RE (RE=Sm, Eu, Tb, Dy, Tm) Phosphors (BaMoO4:RE (RE=Sm, Eu, Tb, Dy, Tm) 형광체의 구조 및 발광 특성)

  • Gang, Min-Ji;Jo, Sin-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.105-106
    • /
    • 2012
  • 고상반응법을 사용하여 다양한 활성제 이온 (Eu, Sm, Tb, Tm, Dy)을 도핑한 $BaMoO_4$ 형광체 분말을 제조하였다. 합성한 형광체의 결정 구조는 활성제 종류에 관계없이 $2{\theta}=26.34^{\circ}$에서 주 피크를 갖는 정방정계이었다. 발광스펙트럼의 경우에 첨가한 활성제이온에 따라 다양한 색상을 발생하였다.

  • PDF

Luminescence Properties of Ba1-xMoO4:Eux3+ Phosphors Subjected to Eux3+ Concentration (Eu3+ 농도에 따른 Ba1-xMoO4:Eux3+ 형광체의 발광 특성)

  • Hwang, Su-Min;Park, Tae-Jun;Jeong, U-Jin;Jang, Won-U;Kim, Chun-Su;Jo, Sin-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.103-104
    • /
    • 2012
  • 고상반응법을 사용하여 $Eu^{3+}$ 이온의 농도를 변화시키면서 $Ba_{1-x}MoO_4:Eu{_x}^{3+}$ 형광체 분말을 제조하였다. 합성한 적색 형광체의 결정 구조, 표면 형상, 발광 및 흡수 스펙트럼은 각각 XRD, SEM, 자외선-가시광선 분광기를 사용하여 조사하였다. 형광체 분말의 결정 구조는 $Eu^{3+}$ 이온의 농도비에 관계없이 $2{\theta}=26.52^{\circ}$에 주 피크를 갖는 정방정계이었으며, 최대 적색 발광 스펙트럼은 618 nm에서 관측되었다.

  • PDF

Synthesis and Physical Properties of MO·Fe12O18 (M/Ba and Sr) Nanoparticles Prepared by Sol-Gel Method Using Propylene Oxide (Propylene Oxide를 이용한 졸-겔법에 의한 MO·Fe12O18 (M/Ba, Sr) 나노 분말의 합성과 물리적 특성)

  • Lee, Su Jin;Choe, Seok Burm;Gwak, Hyung Sub;Paik, Seunguk
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.420-425
    • /
    • 2006
  • Nano sized mixed metal hexagonal ferrite powders with improved magnetic properties have been prepared by sol-gel method using propylene oxide as a gelation agent. To obtain the desired ferrite, two different metal ions were used. One of the ions has only +2 formal charge. The key step in the processes is that hydrated $Ba^{2+}$ or $Sr^{2+}$ ions are hydrolyzed and condensed at the surface of the previously formed $Fe_{2}O_{3}$ gel. In this processes, all the reaction can be finished within a few minutes. The magnetic properties of the produced powder were improved by heat treatment. The highest values of the magnetic properties were achieved at temperature $150^{\circ}C$ lower than those of the previously published values. The highest observed values of coercivity and the saturation magnetization of Sr-ferrite and Ba-ferrite powder were 6198 Oe, 5155 Oe and 74.4 emu/g, 68.1 emu/g, respectively. The ferrite powder annealed at $700^{\circ}C$ showed spherical particle shapes. The resulting spheres which were formed by the aggregation of nanoparticles with size 3~5 nm have diameter around 50 nm. The powder treated at $800^{\circ}C$ showed hexagonal-shaped grains with crystallite size above 500 nm.

Investigation of Mössbauer Spectra of Ba2Mg0.5Co1.5(Fe0.99In0.01)12O22 (Ba2Mg0.5Co1.5(Fe0.99In0.01)12O22의 뫼스바우어 분광 연구)

  • Lim, Jung-Tae;Kim, Chin-Mo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.19-22
    • /
    • 2012
  • $Ba_2Mg_{0.5}Co_{1.5}(Fe_{0.99}In_{0.01})_{12}O_{22}$ was prepared by the conventional solid-state reaction method, and studied by x-ray diffractometer, vibrating sample magnetometer, and Mossbauer spectrometer. The crystal structure was determined to be a single-phased rhombohedral with space group R-3m. Magnetization value were $M_s$ = 28.6 emu/g at 295 K. The hysteresis loops indicate that all the samples are ferrimagnetic behaviors. Mossbauer spectra of $Ba_2Mg_{0.5}Co_{1.5}(Fe_{0.99}In_{0.01})_{12}O_{22}$ have been 6-sextet taken at various temperatures ranging from 4.2 to 620 K. Based on the isomer shift (${\delta}$) values of all samples, the charge states were found to be $Fe^{3+}$ state at all temperatures, the Curie temperature was determined to be 630 K by the ZVC curve.

Preparation of 27Ni6Zr4O143M(M=Mg, Ca, Sr, or Ba)O/70 Zeolite Y Catalysts and Hydrogen-rich Gas Production by Ethanol Steam Reforming

  • Kim, Dongjin;Lee, Jun Su;Lee, Gayoung;Choi, Byung-Hyun;Ji, Mi-Jung;Park, Sun-Min;Kang, Misook
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2073-2080
    • /
    • 2013
  • In this study the effects of adding alkaline-earth (IIA) metal oxides to NiZr-loaded Zeolite Y catalysts were investigated on hydrogen rich production by ethanol steam reforming (ESR). Four kinds of alkaline-earth metal (Mg, Ca, Sr, or Ba) oxides of 3.0% by weight were loaded between the $Ni_6Zr_4O_{14}$ main catalytic species and the microporous Zeolite Y support. The characterizations of these catalysts were examined by XRD, TEM, $H_2$-TPR, $NH_3$-TPD, and XPS. Catalytic performances during ESR were found to depend on the basicity of the added alkaline-earth metal oxides and $H_2$ production and ethanol conversion were maximized to 82% and 98% respectively in 27($Ni_6Zr_4O_{14}$)3MgO/70Zeolite Y catalyst at $600^{\circ}C$. Many carbon deposits and carbon nano fibers were seen on the surface of $30Ni_6Zr_4O_{14}$/70Zeolite Y catalyst but lesser amounts were observed on alkaline-earth metal oxide-loaded 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts in TEM photos after ESR. This study demonstrates that hydrogen yields from ESR are closely related to the acidities of catalysts and that alkaline-earth metal oxides reduce the acidities of 27($Ni_6Zr_4O_{14}$)3MO/70Zeolite Y catalysts and promote hydrogen evolution by preventing progression to hydrocarbons.

Photoluminescence and Concentration Quenching Properties of BaMoO4:Tb3+ Phosphors (BaMoO4:Tb3+ 형광체의 발광과 농도 소광 특성)

  • Cho, Shinho;Kim, Jindae;Hwang, Donghyun;Cho, Seon-Woog
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.67-72
    • /
    • 2016
  • $BaMoO_4:Tb^{3+}$ phosphor powders were synthesized with different concentrations of $Tb^{3+}$ ions using the solid-state reaction method. XRD patterns showed that all the phosphors, irrespective of the concentration of $Tb^{3+}$ ions, had tetragonal systems with two main (112) and (004) diffraction peaks. The excitation spectra of the $Tb^{3+}$-doped $BaMoO_4$ phosphors consisted of an intense broad band centered at 290 nm in the range of 230-330 nm and two weak bands. The former broad band corresponded to the $4f^8{\rightarrow}4f^75d^1$ transition of $Tb^{3+}$ ions; the latter two weak bands were ascribed to the $^7F_2{\rightarrow}^5D_3$ (471 nm) and $^7F_6{\rightarrow}^5D_4$ (492 nm) transitions of $Tb^{3+}$. The main emission band, when excited at 290 nm, showed a strong green band at 550 nm arising from the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ ions. As the concentration of $Tb^{3+}$ increased from 1 to 10 mol%, the intensities of all the emission lines gradually increased, approached maxima at 10 mol% of $Tb^{3+}$ ions, and then showed a decreasing tendency with further increase in the $Tb^{3+}$ ions due to the concentration quenching effect. The critical distance between neighboring $Tb^{3+}$ ions for concentration quenching was calculated and found to be $12.3{\AA}$, which indicates that dipole-dipole interaction was the main mechanism for the concentration quenching of the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ in the $BaMoO_4:Tb^{3+}$ phosphors.

Ionic Doping Effect in Bi-layered Perovskite SrBi2Nb2O9 Ferroelectrics (비스무스 층구조형 페로브스카이트 SrBi2Nb2O9 강유전체의 이온 치환 효과)

  • Park, S.E.;Cho, J.A.;Song, T.K.;Kim, M.H.;Kim, S.S.;Lee, H.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.846-849
    • /
    • 2003
  • Doping effect of various ions in Bi-layered ferroelectric $SrBi_2$$Nb_2$$O_{9}$ (SBN) ceramics was studied. Undoped SBN ceramic and SBN ceramics doped with $Ba^{2+}$, $Pb^{2+}$,$ Ca^{2+}$ , $Bi^{3+}$ , $La^{3+}$ , $Ti^{4+}$ , $Mo^{6+}$ , and $W^{6+}$ ions were made by a solid state reaction. Dielectric constants were measured with temperature. Ferroelectric transition temperature decreased with $Pb^{2+}$ , $Ba^{2+}$ , $La^{3+}$ doping, but the transition temperature increased with $Ca^{2+}$ , $Bi^{3+}$ , $Ti^{4+}$, $Mo^{6+}$ , or$ W^{6+}$ ionic doping. These results show that the ion size plays an important role in the ferroelectricity of SBN ceramic.

The Enhanced Magnetic Transition Temperature in Double Perovskites A2FeMoO6 (A=Ca, Sr and Ba) : Electron Doping Effects

  • Kim J.;Yang H. M.;Lee B. W.
    • Journal of Magnetics
    • /
    • v.10 no.1
    • /
    • pp.10-13
    • /
    • 2005
  • We have studied effects of the partial substitution of $La^{3+}$ for $A^{2+}$ on the magnetic properties of double perovskites $A_2FeMoO_6$ (A=Ca, Sr and Ba). Polycrystalline $A_{2-x}La_xFeMoO_6(0{\leq}x{\leq}0.2)$ samples have been prepared by the conventional solid-state reaction in a stream of 5% $H_2$/Ar gas. The x-ray data indicate that A=Ca is monoclinic with the space group P$2_1$/n, A=Sr is tetragonal with the space group I4/mmm, and A=Ba is cubic with the space group Fm3m. The substitution of $La^{3+}$ for $A^{2+}$ results in a cell volume increase for A=Ca and a cell volume reduction for A=Ba. The decrease of saturation magnetization with increasing x arises from the reduction of magnetic moment associated with the electron doping and the disorder at the Fe and Mo sites. The partial substitution of magnetic $La^{3+}$ for $A^{2+}$ considerably enhances the Curie temperature $T_c$ from 316 K for x = 0 to 334 K for x = 0.2. This enhancement of $T_c$ with $La^{3+}$ doping originates from electron doping effects in addition to ionic size ones.