DOI QR코드

DOI QR Code

Ionic Doping Effect in Bi-layered Perovskite SrBi2Nb2O9 Ferroelectrics

비스무스 층구조형 페로브스카이트 SrBi2Nb2O9 강유전체의 이온 치환 효과

  • Park, S.E. (Department of Ceramic Science and Engineering, Changwon National University) ;
  • Cho, J.A. (Department of Ceramic Science and Engineering, Changwon National University) ;
  • Song, T.K. (Department of Ceramic Science and Engineering, Changwon National University) ;
  • Kim, M.H. (Department of Ceramic Science and Engineering, Changwon National University) ;
  • Kim, S.S. (Department of Physics, Changwon National University) ;
  • Lee, H.S. (Department of Physics, Changwon National University)
  • Published : 2003.12.01

Abstract

Doping effect of various ions in Bi-layered ferroelectric $SrBi_2$$Nb_2$$O_{9}$ (SBN) ceramics was studied. Undoped SBN ceramic and SBN ceramics doped with $Ba^{2+}$, $Pb^{2+}$,$ Ca^{2+}$ , $Bi^{3+}$ , $La^{3+}$ , $Ti^{4+}$ , $Mo^{6+}$ , and $W^{6+}$ ions were made by a solid state reaction. Dielectric constants were measured with temperature. Ferroelectric transition temperature decreased with $Pb^{2+}$ , $Ba^{2+}$ , $La^{3+}$ doping, but the transition temperature increased with $Ca^{2+}$ , $Bi^{3+}$ , $Ti^{4+}$, $Mo^{6+}$ , or$ W^{6+}$ ionic doping. These results show that the ion size plays an important role in the ferroelectricity of SBN ceramic.

Keywords

References

  1. K. Watanabe, M. Tanaka, E. Sumitomo, K. Katori, H. Yagi, and J.F. Scott, Appl. Phys. Lett. 73, 126 (1998) https://doi.org/10.1063/1.121705
  2. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, and W. Jo, Nature, 401, 682 (1999) https://doi.org/10.1038/44352
  3. M.J. Forbess, S. Seraji, Y. Wu, C.P. Nguyen, and G.Z. Cao, App. Phys. Lett. 76, 2934 (2000) https://doi.org/10.1063/1.126521
  4. Y. Noguchi and M. Miyayama, Appl. Phys. Lett. 78, 1903 (2001) https://doi.org/10.1063/1.1357215
  5. B. Yang, T.K. Song, S. Aggarwal, and R. Ramesh, Appl. Phys. Lett. 71, 3578 (1997) https://doi.org/10.1063/1.120396
  6. G.H. Haertling and C.E. Land, J. Am. Ceram. Soc. 54, 1 (1971) https://doi.org/10.1111/j.1151-2916.1971.tb12154.x
  7. T.K. Song, S.E. Park, J.A. Cho, M.H. Kim, J.S. Kim, H.-S. Lee and S.S. Kim, J. Korean Phys. Soc. 42, S1343 (2003)
  8. E.C. Subbarao, J. Phys. Chem. Solids 23, 665 (1962) https://doi.org/10.1016/0022-3697(62)90526-7
  9. J.S. Kim, C.-I. Cheon, H.-S. Shim and C.H. Lee, J. Eur. Ceram. Soc., 21, 1295 (2001) https://doi.org/10.1016/S0955-2219(01)00004-8
  10. C. Kittel, Introduction to Solid State Physics (6th ed., John Wiley & Sons, New York, 1986) p.76
  11. M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1982)
  12. Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano and F. Izumi, Phys. Rev. B61, 6559 (2000) https://doi.org/10.1103/PhysRevB.61.6559
  13. Y. Wu, Mike J. Forbess, S. Seraji, S.J. Limmer, T.P. Chou, C. Nguyen and G. Cao, J. Appl. Phys. 90, 5296 (2001) https://doi.org/10.1063/1.1413236
  14. R.D. Shannon, Acta Crystallogr., A32, 751 (1976) https://doi.org/10.1107/S0567739476001551
  15. A. Ando, M. Kimura and Y. Sakabe, Jpn. J. Appl. Phys. 42, 150 (2003) https://doi.org/10.1143/JJAP.42.150