• Title/Summary/Keyword: BaCeO3

Search Result 121, Processing Time 0.028 seconds

UV pumped three color phosphor blend White emitting LEDs

  • Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Kyung-Nam;Kim, Chang-Hae;Kim, Ho-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1338-1342
    • /
    • 2005
  • We have synthesized an $Eu^{2+}$-activated $Sr_3MgSi_2O_8$ blue phosphor and $Ba_2SiO_4$ green phosphor and $Ba^{2+}$ co-doped $Sr_3SiO_5$ red phosphor investigated an attempt to develop white LEDs by combining it with a GaN blue LED $chip(\lambda_{em}=405 nm)$. Three distinct emission bands from the GaN-based LED and the $(Sr_3MgSi_2O_8:Eu\; +\; Ba_2SiO_4:Eu\; +\; Ba^{2+}\; co-doped\; Sr_3SiO_5:Eu)$ phosphor are clearly observed at 460nm, 520 nm and at around 600 nm, respectively. These three emission bands combine to give a spectrum that appears white to the naked eye. Our results show that GaN (405 nm chip)-based $(Sr_3MgSi_2O_8:Eu\; +\; Ba_2SiO_4:Eu\; +\; Ba^{2+}\; co-doped\; Sr_3SiO_5:Eu) exhibits a better luminous efficiency than that of the industrially available product InGaN (460 nm chip)-based YAG:Ce.

  • PDF

Effect of Nickel Addition on Sintering Behavior and Electrical Conductivity of BaCe0.35Zr0.5Y0.15O3-δ

  • An, Hyegsoon;Shin, Dongwook;Ji, Ho-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.91-97
    • /
    • 2019
  • The effect of different Ni-containing additives on the sintering behavior and electric conductivity of the proton conducting electrolyte $BaCe_{0.35}Zr_{0.5}Y_{0.15}O_{3-{\delta}}$ (BCZY5) was investigated. Ni-doped, NiO-added, and $BaY_2NiO_5$(BYN)-added (all 4 mol%) BCZY5 samples were prepared by the solid state synthesis method and sintered at $1400^{\circ}C$ for 6 h. Among the three samples, the onset of densification was observed at the lowest temperature for NiO-added BCZY5, which is attributed to the formation of an intermediate phase at a low melting temperature. The BYN-added sample, where no consumption of the constitutional elements of the electrolyte was expected during sintering, exhibited the highest electrical conductivity whereas the doped sample had the lowest conductivity. The electrical conductivities at $500^{\circ}C$ under humid argon atmosphere were measured to be 2.0, 4.8, and $6.2mS{\cdot}cm^{-1}$ for Ni-doped and NiO- and BYN-added samples, respectively.

YBa$_2$Cu$_3$O$_{7-x}$films fabricated on IBAD templates by MOCVD process (MOCVD 공정으로 IBAD 템플릿 위에 제조된 YBa$_2$Cu$_3$O$_{7-x}$ 박막)

  • Jun Byung-Hyuk;Choi Jun-Kyu;Kim Ho-Jin;Kim Chan-Joong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.21-26
    • /
    • 2004
  • Deposition condition of YBa$_2$Cu$_3$$O_{7-x}$ (YBCO) films on moving IBAD templates (CeO$_2$/IBAD-YSZ/SS) was studied in a hot-wall type metal organic chemical vapor deposition (MOCVD) process using single liquid source. The reel velocity was 40 cm/hr and the source mole ratios of Y(tmhd)$_3$:Ba(tmhd)$_2$:Cu(tmhd)$_2$ were 1:2.3:3.1 and 1:2.1:2,9, Two different types of IBAD templates with thin CeO$_2$ and thick CeO$_2$ layers were used, The YBCO films were successfully deposited at the deposition temperatures of 780~89$0^{\circ}C$ ; the a-axis growth was observed together with the c-axis growth up to 83$0^{\circ}C$. while the c-axis growth became dominant above 83$0^{\circ}C$. The top surface of the c-axis film was fairly dense and included a small amount of the a-axis growth, although the peaks of the a-axis grains were not observed in XRD pattern, The YBCO film deposited on IBAD template with thin CeO$_2$ layer showed low critical current of 2.5 A/cm-width. while the YBCO film deposited on IBAD template with thick CeO$_2$ layer showed higher critical current of 50 A/cm-width. This result indicates that thick CeO$_2$ layer is thermally more stable than thin CeO$_2$ layer at the high deposition temperature of the MOCVD process.s.

In-situ electron beam growth of $YBa_2Cu_3O_{7-x}$ coated conductors on metal substrates

  • Jo, W.;Ohnishi, T.;Huh, J.;Hammond, R.H.;Beasley, M.R.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.175-180
    • /
    • 2007
  • High temperature superconductor $YBa_2Cu_3O_{7-x}$ (YBCO) films have been grown by in-situ electron beam evaporation on artificial metal tapes such as ion-beam assisted deposition (IBAD) and rolling assisted biaxially textured substrates (RABiTS). Deposition rate of the YBCO films is $10{\sim}100{\AA}/sec$. X-ray diffraction shows that the films are grown epitaxially but have inter-diffusion phases, like as $BaZrO_3\;or\;BaCeO_3$, at their interfaces between YBCO and yttrium-stabilized zirconia (YSZ) or $CeO_2$, respectively. Secondary ion mass spectroscopy depth profile of the films confirms diffused region between YBCO and the buffer layers, indicating that the growth temperature ($850{\sim}900^{\circ}C$) is high enough to cause diffusion of Zr and Ba. The films on both the substrates show four-fold symmetry of in-plane alignment but their width in the -scan is around $12{\sim}15^{\circ}$. Transmission electron microscopy shows an interesting interface layer of epitaxial CuO between YBCO and YSZ, of which growth origin may be related to liquid flukes of Ba-Cu-O. Resistivity vs temperature curves of the films on both substrates were measured. Resistivity at room temperature is between 300 and 500 cm, the extrapolated value of resistivity at 0 K is nearly zero, and superconducting transition temperature is $85{\sim}90K$. However, critical current density of the films is very low, ${\sim}10^3A/cm^2$. Cracking of the grains and high-growth-temperature induced reaction between YBCO and buffer layers are possible reasons for this low critical current density.

  • PDF

Electrical Properties of Donor-doped BaTiO3 Ceramics by Attrition Milling and Calcination Temperature (분쇄 방법 및 하소온도에 따른 Doner-doped BaTiO3의 전기적 특성)

  • Lee, Jeong-Cheol;Myong, Seong-Jae;Chun, Myoung-Pyo;Cho, Jeong-Ho;Kim, Byung-Ik;Shin, Dong-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.3
    • /
    • pp.217-221
    • /
    • 2008
  • In this study, We have been investigated the effect of calcination temperature and high-energy ball-milling of powder influences the $BaTiO_3$-based PTCR(Positive Temperature coefficient Resistance) characteristics and microstructure. The mixed powder was obtained from $BaCO_3$, $TiO_2$, $CeO_2$ ball-milled in attrition mill. The mixed powder was calcine from 1000 $^{\circ}C$ to 1200 $^{\circ}C$ in air and then it was sintered in reduction- re-oxidation atmosphere. As a result, The room-temperature electrical resistivity decreased and increased with increasing calcination temperature. specially, Attrition milled powder could have low room-temperature resistivity and high PTC jump order at 1100 $^{\circ}C$. attrition milling had lower room-temperature resistivity than ball milling. Particle size decreased by Attrition milling of powder influences in calcination temperature and room-temperature resistivity.

Studies on the Deactivation-resistant Ru Catalyst (Ru 촉매의 비활성화 억제를 위한 연구)

  • Kim, Young-Kil;Yie, Jae-Eui;Cho, Sung-June;Ryoo, Ryong
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.808-818
    • /
    • 1994
  • Effects of ceria additive on the activity and thermal aging behavior of supported Ru catalysts were investigated using Ru/${\gamma}$-$Al_2O_3$and Ru/$CeO_2$-${\gamma}$-$Al_2O_3$. The catalysts were characterized by $^{129}Xe$-NMR and $H_2$ chemisorption. The cataltic activity for conversion of CO, HC and $NO_x$ was measured using simulated automobile engine exhausts under lean, rich and stoichiometric conditions. For both fresh and aged catalysts, Ru/$CeO_2$-${\gamma}$-$Al_2O_3$ was more active than Ru/${\gamma}$-$Al_2O_3$ for all three pollutants. Results of $^{129}Xe$-NMR and $H_2$ chemisorption indicated that sintering of Ru particles occurred to the same extent for both catalysts during the thermal aging process. After thermal aging at 673K, however, the catalytic activity of the aged Ru/$CeO_2$-${\gamma}$-$Al_2O_3$ was substantially higher than that of the fresh one, while the activity of Ru/${\gamma}$-$Al_2O_3$ decreased after the thermal aging. This finding may suggest new active sites were created during the thermal aging, probably in the vicinity of the interface between Ru and Ce. For more quantitative investigation of the effect of a cation such as Ce on the thermal aging of Ru metal particles, Ru catalysts supported on cation-exchanged Y-zeolites were used as the model catalysts. The results indicated that when Ba, Ca, La, Y or Ce was used for the cation exchange, the exchanged cation did not affect the thermal aging behavior of Ru in Y-zeolite, as evidenced by $^{129}Xe$-NMR and EXAFS.

  • PDF

MOD-processed YBCO coated conductors on the $CeO_2$-buffered IBAD-MgO template

  • Shin, G.M.;Ko, R.K.;Oh, S.S.;Moon, S.H.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.20-24
    • /
    • 2009
  • YBCO coated conductors (CC) on the $CeO_2$-buffered IBAD-MgO template were fabricated by metal-organic deposition (MOD) Process with Ba-trifluoroacetate and fluorine-free Y and Cu precursor materials. The precursor solution was coated on $CeO_2$-buffered IBAD MgO templates using the multiple dip-coating method, decomposed into inorganic precursors by pyrolysis up to $400^{\circ}C$ within 3 h, and finally fired at $740{\sim}800^{\circ}C$ in a reduced oxygen atmosphere. Microstructure, texture, and superconducting properties of YBCO films were found highly sensitive to both the firing temperature and time. The high critical current density ($J_C$) of $1.15\;MA/cm^2$ at 77.3K in the self-field could be obtained from $1\;{\mu}m$ thick YBCO CC, fired at $740^{\circ}C$ for 3.5 h, implying that high performance YBCO CC is producible on IBAD MgO template. Further enhancement of $J_C$ values is expected by improving the in-plane texture of $CeO_2$-buffer layer and avoiding the metal substrate contamination.

Effect of Zirconium Dioxide in BaO-ZnO-B2O3-SiO2 system on Optical Properties of Color Conversion Glasses

  • Jeong, HyeonJin;Jeon, Dae-Woo;Kim, Jin-Ho;Lee, Young Jin;Lee, MiJai;Hwang, Jonghee;Lee, Jungsoo;Yang, Yunsung;Youk, Sookyung;Park, Tae-Ho;Shin, Dongwook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.258-262
    • /
    • 2016
  • The effect of zirconium dioxide ($ZrO_2$) on the properties of color conversion glasses was examined in the $BaO-ZnO-B_2O_3-SiO_2$ system. The difference in refractive index between glass and phosphor affect the optical properties of the color conversion glass because of light scattering. Reducing the difference in refractive index is a method to improve the luminous efficacy of color conversion glasses. As a reference, a type of glass that contains 25 mol% of each component was used. To increase the refractive index of the glass samples, the BaO content was increased from 25 to 40 mol%, and $ZrO_2$ was added at levels of 1, 3, and 5 mol%. Color conversion glasses were prepared by sintering a mixture of glass and 5 wt% $YAG:Ce^{3+}$ phosphor. As a result, the refractive index of the glass was found to be dependent on the BaO and $ZrO_2$ contents in the BaO-ZnO-$B_2O_3-SiO_2$ system. As the BaO and $ZrO_2$ contents were increased, the luminous efficacy of the color conversion glass was improved because the refractive index difference between the glass and the $YAG:Ce^{3+}$ phosphor decreased.

Filtering Characterization of Dense Ceramic Membrane for Hydrogen Separation (수소분리용 치밀질 세라믹 멤브레인의 여과특성)

  • Hwang, Kwang-Taek;Cheong, Hun
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.19-24
    • /
    • 2005
  • 수소 여과용 치밀질 membrane의 제조는 기존의 SC($SrCeO_3$)보다 높은 여과특성을 가지는 BC($BaCeO_3$)구조의 재료를 이용하여 시편을 제조하였고, 시편의 물성은 기공율, 수분에 대한 내구성 그리고 여과 특성을 측정하였다. 우선 열적 안정성 및 수분에 대한 내구성 향상은 $Y_2O_3$를 0.1mol첨가 하였을 때 1% 이내의 기공율을 가지고 있었으며 수분에 대한 안정성을 위해 boiling test에서도 균열이 발생되지 않고 안정적인 것을 확인할 수 있었다. 또한 여과 특성을 향상시키기 위해 Ce과 치환이 가능하고 전도성을 향상시킬 수 있는 $Ga_2O_3$, $La_2O_3$을 치환하여 물성을 측정한 결과 $Ga_2O_3$은 0.05, $La_2O_3$ 0.1mol%가 최적이었으며, 이들 중 $Ga_2O_3$가 0.05mol 첨가 되었을 때 가장 높은 이온 전도도 값을 얻었으며, $La_2O_3$이 첨가된 경우가 다음으로 높게 나타났다. 전자 전도성을 높이기 위하여 Pt를 sol로 만들어 나노 입자로 분산 시키는 방법으로 실험을 실시 $500^{\circ}C$ 이상의 온도에서는 복합전도에 의해 전도도가 향상되어지는 것을 확인할 수 있다. 또한 이들 시편의 여과 특성을 측정한 전도도 측정의 결과와 동일한 결과를 얻을 수 있었다.

  • PDF